说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 三次多结点样条
1)  Cubic many-knot splines
三次多结点样条
2)  many-knot spline
多结点样条
1.
Based on Kirov’s Theorem,applying many-knot spline functions,one kind of curve or surface modeling method with tangent vectors or normal vectors,by which some local shapes of curves or surfaces can be controlled,has been introduced.
基于Kirov定理,利用多结点样条函数,研究一类带有可控参数的曲线曲面造型方法。
2.
Some adjustable parameters are added to the general many-knot spline, a new kind of interpolating curve is constructed.
在普通的多结点样条中加入相当于导数条件的可控参数,通过调节这些参数控制插值曲线在各型值点的切向量,从而达到满意的曲线造型效果。
3.
A class of many-knot spline interpolation and B-spline fitting under the condition of tangent vectors is studied.
基于Kirov逼近定理,建立一种新的数据拟合方法,研究一类带有附加导数条件的多结点样条插值和B样条拟合。
3)  many knot spline
多结点样条
1.
Further study on many knot spline system is conducted, and a new class of many knot spline function with a parameter is constructed, which preserves the advantages of the original many knot spline functions.
对多结点样条函数作了进一步的研究 ,构造了带参数的多结点样条基本函数 ,其保持了普通多结点样条函数的优越性 。
2.
Many knot spline interpolating curves (MSIC) are a kind of spline curves that precisely pass through every interpolating point on the curves, many knot spline interpolating surfaces (MSIS) also pass through every interpolating point on the surfaces.
鉴于多结点样条曲线 (MSIC)是一种点点通过的插值样条曲线 ,因此在对多结点样条插值曲线研究的基础上 ,给出了有理多结点样条插值曲线和有理多结点样条插值曲面的定义 ,并讨论了有理多结点样条的性质 ,对有理多结点样条曲线和有理多结点样条曲面的光滑拼接问题进行了讨论 。
4)  many-knot splines
多结点样条
1.
The one-dimensional many-knot splines interpolation algorithm is extended to that of two dimensions, which is applied .
为了获得质量更好的插值图像,提出了一种新的C2连续的支撑区间为(-2,2)的三次多结点样条插值核函数。
2.
The one-dimensional many-knot splines interpolation algorithm is extended to that of two dimensions,which is applied to image processing.
为了获得质量更好的插值图像,提出了用具有紧支集的多结点样条基函数来进行图像插值的新技术,并首先将1维的多结点样条插值算法推广到2维,建立了用于图像数据的插值公式;然后分析了多结点样条插值方法的逼近精度、正则性、插值核函数的频域特性。
5)  many-knot spline interpolation
多结点样条插值
6)  Rational many knot spline
有理多结点样条
补充资料:三次样条插值法
分子式:
CAS号:

性质:样条函数中最重要的一种函数。若函数S(x)在区间[a,b]的每一分段[xi-1,xi](i=s,2,…n)上是三次多项式,而整条曲线及其斜率是连续的,便称它是定义在区间[a,b]上的三次样条函数(cubic spline function)。利用拟合的多项式计算函数值,将计算的函数值插入到原有的实验点之间,然后再根据所有实验点拟合成曲线。用三次样条插值法获得的曲线具有很高的精度。

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条