1) human-induced lateral vibration
人致侧向振动
2) Pedestrian-induced lateral vibration
行人导致的侧向振动
3) lateral vibration
侧向振动
1.
Dynamic stiffness for lateral vibration of a viscoelastic floating pile in a nonlinear viscoelastic soil layer is investigated.
该文研究了非线性粘弹性土层中粘弹性悬浮桩侧向振动的动力刚度。
2.
3 Hz are potentially the most vulnerable to exhibit excessive lateral vibration, when excited by large crowds.
为此,本文首先提出了人行桥人激侧向振动的分析理论,根据模态空间内行人和桥梁结构动力响应幅值相等的原则,推导出人行桥避免发生大幅侧向共振的临界人数的估算公式,并分析了临界人数的影响因素。
4) pedestrian-induced vibration
人致振动
1.
Analysis on pedestrian-induced vibration and comfort evaluation of an footbridge;
某人行桥人致振动分析及其舒适度评价
2.
Since the event of excessive pedestrian-induced lateral vibration of London Millennium Bridge,considerable efforts have been devoted to pedestrian-induced vibration,in particular the lateral vibration,and its mitigation for modern footbridges.
自英国千禧桥关闭事件以来,国内外学者对人行桥的人致振动尤其是横向振动进行了大量的研究。
5) lateral vibration of cable
拉索侧向振动
1.
The method of vehicle-bridge coupling vibration considering lateral vibration of cables was adopted for analyzing traffic vibration responses of steel and CFRP cable-stayed bridges with spans ranging from 600m to 1400m.
以跨度600m~1400m的大跨度斜拉桥为对象,应用考虑拉索侧向振动影响的车桥耦合振动分析方法研究了钢索和CFRP索斜拉桥的交通振动响应,比较了车辆计算模型、行车速度对计算结果的影响,并分析了斜拉桥的动力冲击系数。
6) lateral vibration equation
侧向振动方程
补充资料:声致振动
在高强度声场中(例如喷气噪声、附面层压力起伏和轰声等噪声场中),结构由于声激发而引起的声频振动。它是一种宽频带随机振动,常常具有非线性响应,其效应则是累积性疲劳损伤。
中国古代《庄子》一书中记载了悬挂在墙上的乐器能自鸣,这种现象就是弦的声致振动。在小信号声场中,声致振动的效应常常被忽略,通常只讨论物体对声波的反射、衍射和散射等特性。但是在高强度声场中,例如频率为500Hz、声压级为160dB的简谐波声场中空气质点的振动位移超过2mm,振动速度约为7m/s,振动加速度大于2000g(g为重力加速度);必须考虑声场中结构的声致振动效应。近代国防工业、喷气飞机和航天器的发展,产生的喷气噪声和附面层噪声已高达155~170dB。飞行器在飞行过程中和航天器在起飞及再入大气层时都处于强噪声场中。薄板结构会由于声致振动而产生疲劳,或引起铆钉松动,有时还会引起蒙皮撕裂。随着飞行器发动机的推力越来越大,为了提高结构的抗疲劳特性和估计结构的疲劳寿命,促进了声致振动理论和实验技术的发展。
除了声致振动引起的金属疲劳外,在140dB以上的噪声环境中,噪声对无线电元件和精密仪表的干扰会使它们失效或损坏,因而影响遥测、遥控。一些建筑物也会由于轰声激发起振动而破坏。
结构响应 飞行器所遇到的对各种不同外加声场的响应需要用不同的方法来求解。有规律的力引起的结构响应可以严格地描述,但随机力引起的运动必须用统计方法描述。火箭噪声是一种对时间随机但对空间具有严格规律的噪声场,附面层压力起伏在时间上、空间中都是无规的,冲击波则是一种有确定运动的冲击。在宽带噪声激发下,复杂结构的响应具有许多个共振频率。通常力学系统习惯上只分析几个低次简正振动,但对飞行器的轻结构必须考虑高次简正振动。由声场激发的结构振动没有明显的方向性,即三个垂直方向能同时激发,而机械振动的激发力常常是单方向的,用随机振动力激发则更为困难。噪声场激发不需与结构连接并且容易激发起各种简正振动。图a表示了两种结构的声激发简正振动。
统计能量分析 统计能量法是研究喷气噪声和湍流噪声对飞行器结构激发的随机振动响应的方法。这种方法不是求解复杂的数理方程,而是用统计方法研究多维系统间的能量传递和平衡。把系统看作大量简正振动集合,来处理系统的各个随机参量的总体响应。把能量作为系统主要参量,因此声系统与力学系统的差异消失而使计算简化。统计能量法可以用来解决两个或多个构造简单但振动复杂的力学系统与声系统相互耦合,并且在一定随机力作用下的问题,如随机声场作用于壳、板、梁等结构。
声疲劳 飞机和火箭等飞行器的金属结构,由于所承受的噪声压力的变化,产生疲劳(产生裂纹,并扩展乃至断裂)的现象。在各种噪声和附面层压力起伏的声频交变负载作用下,飞机和火箭等结构部件发生共振,或由这些噪声的振动效应产生声疲劳,它与振动和热引起的随机负载导致的疲劳现象没有本质的差别。但是声疲劳损伤常常突然发生,因此对飞行中的飞行器容易引起灾难性事故。
声振实验 用声致振动的实验研究分析,可以确定声疲劳程度和典型环境中的可靠性评价,也可以模拟实际飞行的噪声环境。
对于导弹、飞机、航天器可以观察到一些典型的声致振动情况。为了说明能经受这样的噪声环境,并能防止金属疲劳和器件及仪表失效等,必须在实验室内以不同强度的噪声级来模拟这种条件,进行可靠性评价。声能作用到复杂结构的方法有行波管法和混响室法。声源常用旋笛或气流扬声器。目前混响室内声压级可达165dB,行波管内声压级可达175dB。
见机械振动。
参考书目
E. J. Richards and D. J. Mead, ed., Noise and Acoustic Fatigue in Aeronautics, John Wiley & Sons, New York,1968.
中国古代《庄子》一书中记载了悬挂在墙上的乐器能自鸣,这种现象就是弦的声致振动。在小信号声场中,声致振动的效应常常被忽略,通常只讨论物体对声波的反射、衍射和散射等特性。但是在高强度声场中,例如频率为500Hz、声压级为160dB的简谐波声场中空气质点的振动位移超过2mm,振动速度约为7m/s,振动加速度大于2000g(g为重力加速度);必须考虑声场中结构的声致振动效应。近代国防工业、喷气飞机和航天器的发展,产生的喷气噪声和附面层噪声已高达155~170dB。飞行器在飞行过程中和航天器在起飞及再入大气层时都处于强噪声场中。薄板结构会由于声致振动而产生疲劳,或引起铆钉松动,有时还会引起蒙皮撕裂。随着飞行器发动机的推力越来越大,为了提高结构的抗疲劳特性和估计结构的疲劳寿命,促进了声致振动理论和实验技术的发展。
除了声致振动引起的金属疲劳外,在140dB以上的噪声环境中,噪声对无线电元件和精密仪表的干扰会使它们失效或损坏,因而影响遥测、遥控。一些建筑物也会由于轰声激发起振动而破坏。
结构响应 飞行器所遇到的对各种不同外加声场的响应需要用不同的方法来求解。有规律的力引起的结构响应可以严格地描述,但随机力引起的运动必须用统计方法描述。火箭噪声是一种对时间随机但对空间具有严格规律的噪声场,附面层压力起伏在时间上、空间中都是无规的,冲击波则是一种有确定运动的冲击。在宽带噪声激发下,复杂结构的响应具有许多个共振频率。通常力学系统习惯上只分析几个低次简正振动,但对飞行器的轻结构必须考虑高次简正振动。由声场激发的结构振动没有明显的方向性,即三个垂直方向能同时激发,而机械振动的激发力常常是单方向的,用随机振动力激发则更为困难。噪声场激发不需与结构连接并且容易激发起各种简正振动。图a表示了两种结构的声激发简正振动。
统计能量分析 统计能量法是研究喷气噪声和湍流噪声对飞行器结构激发的随机振动响应的方法。这种方法不是求解复杂的数理方程,而是用统计方法研究多维系统间的能量传递和平衡。把系统看作大量简正振动集合,来处理系统的各个随机参量的总体响应。把能量作为系统主要参量,因此声系统与力学系统的差异消失而使计算简化。统计能量法可以用来解决两个或多个构造简单但振动复杂的力学系统与声系统相互耦合,并且在一定随机力作用下的问题,如随机声场作用于壳、板、梁等结构。
声疲劳 飞机和火箭等飞行器的金属结构,由于所承受的噪声压力的变化,产生疲劳(产生裂纹,并扩展乃至断裂)的现象。在各种噪声和附面层压力起伏的声频交变负载作用下,飞机和火箭等结构部件发生共振,或由这些噪声的振动效应产生声疲劳,它与振动和热引起的随机负载导致的疲劳现象没有本质的差别。但是声疲劳损伤常常突然发生,因此对飞行中的飞行器容易引起灾难性事故。
声振实验 用声致振动的实验研究分析,可以确定声疲劳程度和典型环境中的可靠性评价,也可以模拟实际飞行的噪声环境。
对于导弹、飞机、航天器可以观察到一些典型的声致振动情况。为了说明能经受这样的噪声环境,并能防止金属疲劳和器件及仪表失效等,必须在实验室内以不同强度的噪声级来模拟这种条件,进行可靠性评价。声能作用到复杂结构的方法有行波管法和混响室法。声源常用旋笛或气流扬声器。目前混响室内声压级可达165dB,行波管内声压级可达175dB。
见机械振动。
参考书目
E. J. Richards and D. J. Mead, ed., Noise and Acoustic Fatigue in Aeronautics, John Wiley & Sons, New York,1968.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条