1) flutter modality
颤振形态
1.
The research results,which include the investigation of the aerodynamic performance,flutter-driving mechanism and flutter modality of the basic section and corresponding sections with central stabilizers of different height,indicate that central stabilizer can improve the.
通过对基本断面和四种不同高度稳定板断面的颤振性能、颤振驱动机理和颤振形态变化规律的研究表明,当稳定板高度恰当时,中央稳定板的设置能够有效地改善结构的颤振稳定性能。
2.
Based on the analytical method (2d-3DOF method) for two-dimensional three degrees of freedom coupling flutter, the flutter-driving mechanism and flutter modality of the classical coupled bending-torsional flutter phenomenon about thin plate sections were investigated.
基于二维三自由度耦合颤振分析方法,对平板断面经典扭弯耦合颤振的颤振驱动机理和颤振形态进行了深入研究。
3.
In the field of flutter mechanism research concerning long-span bridges,flutter driving mechanism and flutter modality are two key problems.
针对桥梁颤振机理研究的关键问题即颤振驱动机理和颤振形态,建立了一种能同时研究桥梁振动特征参数与断面气动外形参数的定量关系,以及颤振发生过程中和颤振发生点各自由度运动耦合效应的二维三自由度耦合颤振分析方法。
2) chatter state
颤振状态
1.
The information fusion technique of the chatter state recognition is discussed.
讨论了切削颤振状态识别的信息融合方法 ,分别给出了基于基本概率分配函数和基于证据区间值的颤振状态识别方法。
3) full-mode flutter
全模态颤振
1.
Authors presented a finite element(FE) model and frequency analysis method for analyzing 3-D full-mode flutter of long-span bridges using ANSYS software.
提出了一种在ANSYS中直接分析大跨桥梁三维全模态颤振的有限元模型和频域方法。
4) full-mode flutter analysis
全模态颤振分析
1.
A new approach of full-mode flutter analysis with double parameters is proposed,which is realized in ANSYS,based on the full-order discretized physical model of structure.
基于结构的有限元全物理模型,提出了一种双参数全模态颤振分析方法,并在ANSYS中实现。
5) multimode coupled flutter
多模态耦合颤振
6) multi mode flutter analysis
多模态颤振分析
1.
On the engineering background of a suspension bridge tender project, the effectiveness of the airfoils in the flutter stability of the system is studied by a multi mode flutter analysis approach.
以某悬索桥设计方案为工程背景 ,应用多模态颤振分析方法 ,研究了在主梁上方安装固定风板这种控制措施对改善系统颤振稳定性的效果。
补充资料:颤振
颤振 flutter 弹性结构在均匀气(或液)流中受到空气(或液体)动力、弹性力和惯性力的耦合作用而发生的大幅度振动。它可使飞行器结构破坏,建筑物和桥梁倒塌。发生颤振的必要条件是:结构上的瞬时流体动力与弹性位移之间有相位差,因而使振动的结构有可能从气(或液)流中吸取能量而扩大振幅。最常见的颤振发生在机翼上。当机翼受扰动向上偏离平衡位置后,弹性恢复力使它向下方平衡位置运动,同时产生作用于机翼重心的向上惯性力,因机翼重心在扭心之后,惯性力产生对扭心的力矩而使机翼迎角减小,引起向下的附加气动力,加快机翼向下运动;当机翼运动到下方极限位置而返回向上运动后,出现相反的情况。整个过程中,空气动力是激振力,与飞行速度的二次方成正比;同时还有空气对机翼的阻尼力,与飞行速度成正比。低速时,阻尼力占优势,扰动后的振动逐渐消失,平衡位置是稳定的。当飞行速度超过颤振临界速度后,激振力占优势,平衡位置失稳,产生大幅度振动,导致机翼在很短时间内破坏。防止机翼颤振的最有效方法是使机翼重心前移以减小惯性力矩。设计飞机时,要在风洞中进行模型试验以确定颤振临界速度。飞机研制成功后,还需进行飞行颤振试验。 |
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条