1) nonsquare constants
非方常数
1.
Study on equivalent representation of nonsquare constants of spaces weaker than euclidean spaces
比欧氏空间弱的空间的非方常数等价表示
2.
Equivalent representation of nonsquare constants of symmetric Minkowski planes is obtained,and a conclusion that pointwise nonsquare constants of symmetric Minkowski planes achieve sqrt 2 uniformly at some point is obtained.
给出了对称的Minkowski平面上非方常数的一个等价表示,证明了对称的Minkowski平面的点态非方常数在某点处一致地取得2~(1/2)。
3.
Gives the expression of nonsquare constants in the Musielak-Orlicz sequence space,The results is follwing: if M∈δ~0_2,thenC_Jl~0_M=supinfk>1C_(x.
给出了Musielak-Orlicz序列空间的非方常数表达式。
2) nonsquare constant
非方常数
1.
The relationship of nonsquare constant between Orlicz sequence spaces and utilizing relevant result is given,holding the representation,estimation and high-exact similar computation of nonsquare constant in move extensive space type.
在一定条件下给出了Orlicz序列空间及其对偶空间非方常数之间的关系,利用相关结果可对更广泛的空间类的非方常数进行表示,估计及高精确度的近似计算。
2.
It it proved that in Banach space X, the Neumann-Jordan constants CNJ(X) <2 if and only if the nonsquare constant (in James sense) J(X) < 2.
证明了Banach空间X的Neumann-Jordan常数CNJ(X)<2当且仅当X的(James定义下)非方常数J(X)<2。
3.
In 1991, two kinds of nonsquare constants in the sense of James and Schaffer were introduced by J.
Lau引入了在James意义下和Schaffer意义下的两种非方常数,是空间非方性质以及相关几何性质的量化。
3) non-square constants
非方常数
1.
Therefore, it is very important in theory to study geometric constants, such as non-square constants, in symmetric Minkowski planes.
因此,研究对称的Minkowski平面上非方常数等几何常数的取值,具有重要的理论价值。
2.
In this paper,the non-square constants in normed linear spaces and some characteristics of thinable spaces is discussed,and proves that there is only certainty in thinable spaces,and defines a new constant A(X,r),achieves the property of the geometrical spaces.
研究赋范线性空间中的非方常数以及可细化空间的一些特征,证明了在可细化空间中存在惟一确定性,并且引入了一个新的常数A(X,r),通过对A(X,r)的研究,实现了对空间几何性质的研究。
4) pointwise nonsquare constants
点态非方常数
1.
Equivalent representation of nonsquare constants of symmetric Minkowski planes is obtained,and a conclusion that pointwise nonsquare constants of symmetric Minkowski planes achieve sqrt 2 uniformly at some point is obtained.
给出了对称的Minkowski平面上非方常数的一个等价表示,证明了对称的Minkowski平面的点态非方常数在某点处一致地取得2~(1/2)。
2.
Gao and Lau Ka-Sing introduced James nonsquare constants and Schaffer constants, and in 1999, Ji Donghai and Wang Shuxin gave the defination of pointwise nonsquare constants.
Gao 和Lau Ka-Sing 给出了James 非方常数C_J和Schaffe 非方常数C_S的定义,1999 年计东海和王淑欣引进了点态非方常数的概念。
5) generalized nonsquare constants
广义非方常数
1.
On the other hand, generalized nonsquare constants were introduced in 1971, on which there has been few result since then.
另一方面,非方常数早在1971年就得到了推广,然而迄今为止,关于广义非方常数的研究成果却不多。
6) non-constant solution
非常数解
1.
The Harnack inequality of the elliptic system is given, and the condition without non-constant solution is investigated.
研究了二种群捕食系统,给出椭圆系统的Harnack不等式及其没有非常数解的条件。
2.
By the method of constructing the Lyapunov functional, it is shown that there are no non-constant solutions to the elliptic problem if inter-specific competitions are strong or if the diffusion rates of species.
研究2种群竞争抑制系统,利用上下解的方法给出了抛物方程组解的存在性和惟一性的证明,讨论对应常微分方程组平衡解的全局稳定性,给出相应椭圆系统的Harnack不等式,并通过构造Lyapunov泛函说明在种群内部竞争激烈或扩散系数足够大的条件下,其对应的椭圆系统没有非常数解。
补充资料:非方
1.异域。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条