1) highly-oscillatory ordinary differential equation
高振荡常微分方程
1.
Highly-oscillatory ordinary differential equations are a kind of equations whose solutions are highly-oscillatory.
本文以特殊的线性振荡方程y″+g(t)y=0(其中(?)g(t)=+∞)为例讨论了高振荡常微分方程数值解问题。
2) Highly-oscillatory ordinary differential equations
高振荡常微分方程
1.
Highly-oscillatory ordinary differential equations are a kind of equations whose solutions include highly-oscillating functions.
本文以特殊的线性振荡方程y″+g(t)y=0(其中(?) g(t)=+∞)为例讨论了高振荡常微分方程数值解问题。
3) Highly-oscillatory differential equations
高振荡微分方程
1.
Highly-oscillatory differential equations are a kind of equations whose solutions are highly-oscillatory, which are extensively applied in molecular dynamics, celestial mechanics, quantum chemistry, atomic physics and so on.
高振荡微分方程是指其解具有高振荡性的一类微分方程,在分子动力学、天体力学、量子化学以及原子物理等方面有着广泛的应用。
2.
Highly-oscillatory differential equations are a kind of equations whose solutions are highly-oscillatory,it is extensively applied in aspects such as molecular dynamics,celestial mechanics,quantum chemistry,atomic physics and so on.
高振荡微分方程是其解具有高振荡性的一类微分方程,它广泛应用于诸如分子动力学、天体力学、量子化学以及原子物理等方面。
3.
Highly-oscillatory differential equations are a kind of equations whose solutions are highly-oscillatory,which are extensively applied in molecular dynamics,celestial mechanics,quantum chemistry,atomic physics and so on.
高振荡微分方程是指其解具有高振荡性的一类微分方程,在分子动力学、天体力学、量子化学以及原子物理等方面有着广泛的应用。
5) oridinary differential equations of the earth's free oscillation
地球自振常微分方程
6) linear highly-oscillatory differential equation
线性高振荡方程
1.
We consider the construction of numerical methods for linear highly-oscillatory differential equation y″+g(t)y=0.
考虑了线性高振荡方程y″+g(t)y=0数值解法的构造问题。