1) boundary value
边值
1.
New numerical method for general boundary value problems of ordinary differential equations;
求解常微分方程边值问题新的数值方法
2.
The boundary value of vector-valued Cauchy type inegrals in locally convex space;
局部凸空间中Cauchy型积分的边值问题
3.
The boundary value of vector-valued Cauchy type integrals;
关于向量值函数柯西型积分的边值问题
2) boundary value problem
边值
1.
The existence of solutions for a nonliner fourth-order boundary value problems under a two-parameter nonresonance condition.
在两参数非共振条件下研究了一类四阶微分方程的边值问题。
3) boundary value
边值,边界值
4) boundary value problem
边值问题
1.
Existence of solution of boundary value problems with p-Laplace operator;
具p-Laplace算子型边值问题解的存在性
2.
Existence of three positive solutions in boundary value problems of a class of second order ordinary differential systems;
一类二阶常微分方程组边值问题三个正解的存在性
3.
Solutions to m-point boundary value problems of higher order ODES at resonance;
具共振条件高阶微分方程多点边值问题的解(英文)
5) boundary-value problem
边值问题
1.
Existence of convex solutions for boundary-value problem of dynamic equations on time scales;
测度链上动力方程边值问题凸解的存在性
2.
Multiple solution of some boundary-value problems of n-order difference equation;
一类n阶差分方程边值问题的多解性
3.
Numerical solution of second order singular-perturbed boundary-value problems;
一类二阶奇异摄动边值问题的数值解法
6) fixed boundary
边值固定
1.
A hybrid algorithm for dynamic optimization with fixed boundary;
求解边值固定动态优化问题的一种混合算法
2.
Graded optimization strategy and its application to chemical dynamic optimization with fixed boundary;
分级优化用于边值固定的化工动态优化问题
3.
An intermittence reactor dynamic system temperature optimal control with fixed boundary problem is employed f.
针对化工过程系统优化中广泛存在着边值固定的动态优化问题,该问题的求解数学上还没有有效的方法,现今的方法之一是将问题转化为多目标优化问题。
补充资料:边值问题,偏微分方程数值解法
边值问题,偏微分方程数值解法
oundary value problent, numerical methods for partial differential equaSHOE)
边值问颐,偏徽分方程数值解法【加明山叮初uep叻-lem、。umeri因meth.xls for pa币ai diffe比n柱目equa-ti姗月,留.田,劫.明,姗叨姗砚Mer卿职汕p口..,姗朋”》钾…丽e,a门旧‘IM一贝扣叱坦卿,曰M“」 近似解法,所得问题的解用数值表表示.边值间题的(用显式公式、级数等等表达的)精确解仅在极少情形可以建立.在近似解法中应用最广泛的是差分方法(见【lj);它们可应用于最一般的问题且在电子计算机上实现很方便差分方法的本质在于将自变量变化的原来区域用离散的点集—网格来代替,而在方程和边界条件中出现的导数用在此网格点上的差商来秋替,由此原问题就化为有限个(线性的或非线性的)代数方程的组,称之为差分格式‘差分格式的解就取作原间题的近似解,近似解的精确度依赖于逼近方法和网格的精细,即依赖于网格点充满原来的区域的稠密程度下面将只考虑偏微分方程的线性边值问题,而且原问题假定是适定的为了证明差分方法是正确的,就得研究差分问题的适定性和当网格缩小时它的收敛性.差分问题称作适定的(wen~1力sed),如果对任意的右端它的解都存在、唯一且稳定.差分格式的稳定性理解为它的解连续地依赖于右端,且关于网格步长是一致的. 例如,在具有边界f的正方域G二{o<、。‘
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条