1)  maximum entropy method
极大熵法
2)  the interval maximum entropy methods
区间极大熵法
3)  maximal
极大
1.
Numbers of constitutes and nonzero entries of maximal S~2NS matrices;
极大S~2NS阵的分支数与非零元个数
2.
In this paper, we discuss the 2-harmonic spacelike submanifolds in a locally symmetric and conformally flat pseudo-riemannian manifold and get two sufficient conditions under which Mn turns into a maximal submanifold,and the results in [2] are improved.
讨论局部对称共形平坦伪黎曼流形的2-调和类空子流形,得到这类子流形成为极大的二个充分条件,推广了文[2]中的结论。
3.
A matrix A is called a maximal S2NS matrix, if A is an S2NS matrix, but each matrix obtained from A by replacing one zero entry by a nonzero entry is not a S2NS matrix.
若A是S2NS阵且A中任意一个零元换为任意非零元后所得的矩阵都不是S2NS阵,则称A是极大S2NS阵。
4)  maximum
极大
1.
The study of methods for maximum near optimal solution of m×n permutation schedule problems;
同顺序m×n排序问题极大值近似最优解解法的探讨
5)  Module maximum
模极大值
1.
Noise-suppressing image fusion based on module maximum and correlation;
基于模极大值和相关性的图像噪声抑制融合算法
2.
The accurate time when the cutter is worn or broken can be detected by the module maximum point in wavelet transformation results, and the state of cutter's wear can be shown by the value of singular index.
利用小波变换对切削力信号进行分析 ,变换结果的模极大值点反映了刀具发生磨损或破损的时刻 ,而其奇异性指数的大小则反映了刀具的磨损状况。
3.
The singular value decomposition of wavelet transformation module maximum value matrix is proposed.
提出了基于小波变换模极大值矩阵奇异值分解的方法,用该方法获得的奇异值特征矢量作为信号的特征可以压缩特征维数,而且更容易进行计算机自动识别,同时还具有时间平移不变性的突出优点。
6)  modulus maximum
模极大值
1.
Application of wavelet modulus maximum method in denoising processing of oscillo-graphic chronopotentiometric signal;
小波模极大值滤噪法在示波计时电位信号处理中的应用
2.
The application of wavelet transformation modulus maximum technique to the signal extraction;
小波变换模极大值在诱发脑电提取中的应用
3.
A Method based on fast lifting wavelet transform and modulus maximum for detecting power system singular signals;
基于快速提升小波变换的电能畸变信号模极大值检测方法
参考词条
补充资料:极大熵谱估计
      估计平稳随机过程功率谱密度的方法,这种方法在外推时能使自相关函数在未知点的取值具有最大统计自由度。J.P.伯格于1967年首先提出这种方法并把它称为极大熵谱估计。极大熵谱估计最初应用于地球物理学领域地震记录数据的分析,后来在雷达、声纳、图像处理、语言分析以及生物医学等领域都有广泛的应用。
  
  在统计学中,熵是对各种随机试验不确定程度的一种度量。概率分布的熵越大、试验的可能结果越不确定。伯格的思想是要在外推相关函数的每一步,都既能保证相关函数的已知部分不变,又能在新增加外推值之后使概率分布具有最大的熵;也就是在每步外推时不对未知点处自相关函数取值施加任何限制(即其取值具有最大统计自由度,不对它强加任何条件)。极大熵谱估计的这种特点能克服传统的功率谱估计方法分辨率不高的弱点。在理论上,过程的功率谱是自相关函数的傅里叶变换。传统的功率谱估计方法是将样本自相关函数乘以某种窗函数(即对自相关函数加权),然后再作傅里叶变换。窗函数可以增加谱估计的稳定性并减少谱的泄漏,但窗函数会限制谱的分辨力。传统方法存在的问题实际上是由于它把没有观测到的数据(或其自相关函数)都看作为零,同时对已知部分的信息加以人为修改(加权)而引起的。而极大熵谱估计对已知的最大迟延以外的自相关函数进行合理的外推,因而能提高所求功率谱的分辨力,特别是在已知数据量较少时,其效果比传统方法更优。
  
  假设一个平稳正态过程自相关函数的前N+1个迟延点的值r(0),r(1),...,r(N)已确知,需要求r(N+1)的值。以r(0),r(1),...,r(N+1)作为相关函数,则对应的N+2维正态分布的熵为
  
  其中R(N+1)为相关阵:
  
  因此使熵为最大就相当于使行列式 det[R(N+1)]为最大。可以使det[R(N+1)]对r(N+1)的偏导数为零,求出r(N+1)。将得到的r(N+1)代入R(N+2),同理可根据使det[R(N+2)]为最大的条件求出r(N+2)。再把求到的r(N+1)和r(N+2)代入R(N+3)中的相应元素,对det[R(N+3)]求极大可得到r(N+3),依此类推。
  
  与这种方法得到的自相关函数所对应的功率谱为
  
  式中i=刧,Δt是x(t)的采样间隔,ω为频率,M+1为递推次数,而A屌(a0,...,aM)T中各元素可由R(M)A=(1,0,...,0)T 求得,T表示转置。
  
  实际计算时,由于只掌握x(t)的有限记录而无法得知自相关函数的精确值,因此只能用它的估计值替代。伯格在求取r和A(参数向量)的估值方面还提出一种递推算法,它可以避免矩阵求逆,充分利用数据所提供的信息,而且递推过程每步所对应的行列式detR都是非负定的。后来又有其他学者提出新的算法,克服伯格算法中的缺点(如所谓谱线分裂和谱峰漂移),但算法的变化并不改变极大熵的原则。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。