1) Formation flying satellites
编队卫星
1.
SAR high azimuth resolution imaging based on formation flying satellites;
基于编队卫星的SAR高方位向分辨率成像
2.
Based on the demand of relative positioning in formation flying missions,the dynamic observation geometry between the global navigation satellite systems and the formation flying satellites is analyzed.
针对编队飞行中星间相对定位的任务需求,分析了卫星导航系统对编队卫星的动态观测几何问题,引入了相对定位精度衰减因子(RDOP)描述,并讨论了其性质。
2) formation-flying satellites
编队卫星
1.
Foreign Research Status of Inter-satellite State Measurement of Formation-flying Satellites;
编队卫星星间相对状态测量的国外研究现状
2.
Space state measurement is one of the key technologies for the application of formation-flying satellites.
空间状态测量是编队卫星应用需要解决的关键技术之一。
3.
At the end it specifies the technology of formation-flying satellites which is the developmental direction of spaceborne InSAR in the future and the importan.
最后详述了星载InSAR未来的发展方向编队卫星技术以及国外重要的编队卫星计划如法国Cartwheel方案和德国TanDEM-X任务。
3) formation satellites
编队卫星
1.
Then, in non-relative maneuver situation, based on measurement of distance, high-precision relative positioning method of formation satellites which requires high accuracy in relative configuration is proposed.
另一种是在无相对机动情况下,针对编队卫星需保持高精度相对构型的要求,研究了基于相对距离测量信息的星间相对定位算法,研究重点是获取高精度的星间相对位置。
5) satellite formation
卫星编队
1.
Study on the Algorithm for Ground Position Based on Remote Sensing Image from Satellite Formation;
基于卫星编队遥感图像的对地定位算法研究
2.
The second topic is: the guidance algorithm for satellite formation reconfiguration based on relative orbit elements.
针对卫星编队飞行过程中由于任务的改变或成员的进出导致编队构型重构的问题,推导和定义了描述卫星编队的相对轨道要素;提出了基于相对轨道要素的卫星编队构型重构制导算法;使用该算法对近地圆轨道上的卫星编队重构过程中各控制因素与速度增量的关系进行了分析。
3.
Spiral control strategies in satellite formation reconfiguration were put forward and several methods such as uniform spiral, logarithmic spiral, accelerated spiral and accelerated logarithmic spiral were investigated.
系统地探讨利用螺旋控制策略实现卫星编队的构形重构问题,并给出等速螺旋控制、加速螺旋控制、对数螺旋控制、加速对数螺旋控制等几种可行的控制策略。
6) formation flying
卫星编队
1.
The realization of optical sparse aperture by formation flying is a developing direction of the next generation space optical sensing.
利用卫星编队来实现光学稀疏孔径,是下一代空间光学遥感发展的新方向。
2.
In this paper,true anomaly of the chief satellite was taken as basic parameter,in unperturbed situation,formation flying relative dynamic equation was modeled.
稳定性是卫星编队动力学状态耦合分析的重要内容之一。
补充资料:反卫星卫星
能对敌方有威胁的卫星实施摧毁或使其失效的人造地球卫星。 亦称拦截卫星。 它和空间观测网、地面发射-监控系统组成反卫星武器系统。
从1957年苏联发射第一颗人造地球卫星以来,通信、侦察、导航、海洋监视、导弹预警等军用卫星充斥空间,外层空间已在军事上具有战略地位。因此,研制反卫星卫星已成为一项重要战略措施。反卫星作战过程大致如下:由空间观测网对敌方各种卫星进行不间断的观测,编存目标参数,判定其性质(军用或民用的),在适当时机将反卫星卫星发射到预定轨道上,不断监视目标卫星的运行情况;必要时由反卫星卫星上的自动控制系统发出指令,起动变轨发动机,进行变轨机动去接近目标卫星并将其摧毁。最后,由地面发射 -监控系统判断其效果。反卫星卫星的攻击方法有:
①椭圆轨道法。将反卫星卫星发射到一条椭圆轨道上,远地点接近目标的轨道高度,多用于拦截高轨道的卫星;②圆轨道法。反卫星卫星的圆轨道与目标卫星的轨道共面,这样可以较容易地进行变轨机动去接近目标卫星,并可节省推进剂;③急升轨道法。将反卫星卫星发射到一条低轨道上,并在一圈内进行变轨机动,快速拦截目标卫星使其来不及采取防御措施,但需要消耗较多的推进剂。
在一般情况下,对较高轨道的目标卫星使用前两种攻击方法,但反卫星卫星要运行数圈才能完成拦截任务。对轨道高度为500公里以下的目标卫星,通常采用后一种攻击方法。
70年代以来,国外对反卫星卫星已做过多次试验,其中一种试验装置的总重量约3000千克(含变轨机动用的推进剂约500千克),用两级液体火箭发射入轨,具有改变轨道面倾角5°~10°的能力,使用非核战斗部或无控火箭,能拦截运行高度为150~1500公里的卫星。80年代初反卫星武器系统仍处于试验阶段。随着科学技术的发展,反卫星卫星将具有拦截多个目标的能力,并使用激光武器或高能粒子束武器摧毁目标卫星。
从1957年苏联发射第一颗人造地球卫星以来,通信、侦察、导航、海洋监视、导弹预警等军用卫星充斥空间,外层空间已在军事上具有战略地位。因此,研制反卫星卫星已成为一项重要战略措施。反卫星作战过程大致如下:由空间观测网对敌方各种卫星进行不间断的观测,编存目标参数,判定其性质(军用或民用的),在适当时机将反卫星卫星发射到预定轨道上,不断监视目标卫星的运行情况;必要时由反卫星卫星上的自动控制系统发出指令,起动变轨发动机,进行变轨机动去接近目标卫星并将其摧毁。最后,由地面发射 -监控系统判断其效果。反卫星卫星的攻击方法有:
①椭圆轨道法。将反卫星卫星发射到一条椭圆轨道上,远地点接近目标的轨道高度,多用于拦截高轨道的卫星;②圆轨道法。反卫星卫星的圆轨道与目标卫星的轨道共面,这样可以较容易地进行变轨机动去接近目标卫星,并可节省推进剂;③急升轨道法。将反卫星卫星发射到一条低轨道上,并在一圈内进行变轨机动,快速拦截目标卫星使其来不及采取防御措施,但需要消耗较多的推进剂。
在一般情况下,对较高轨道的目标卫星使用前两种攻击方法,但反卫星卫星要运行数圈才能完成拦截任务。对轨道高度为500公里以下的目标卫星,通常采用后一种攻击方法。
70年代以来,国外对反卫星卫星已做过多次试验,其中一种试验装置的总重量约3000千克(含变轨机动用的推进剂约500千克),用两级液体火箭发射入轨,具有改变轨道面倾角5°~10°的能力,使用非核战斗部或无控火箭,能拦截运行高度为150~1500公里的卫星。80年代初反卫星武器系统仍处于试验阶段。随着科学技术的发展,反卫星卫星将具有拦截多个目标的能力,并使用激光武器或高能粒子束武器摧毁目标卫星。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条