1) concrete transformed modulus of elasticity
混凝土换算弹性模量
1.
Based on the creep characteristics of concrete filled steel tubular (CFST) arch bridge, a series of stress redistribution formulae were proposed to predict the time-dependent effect on CFST arch rib by introducing the concrete transformed modulus of elasticity.
根据钢管混凝土拱桥的特点,从变形协调条件出发,通过引入混凝土换算弹性模量,推导了钢管混凝土拱肋应力重分布计算公式。
4) dynamic elastic modulus of concrete
混凝土动态弹性模量
1.
On the dynamic elastic modulus of concrete in the anti-earthquake design of concrete dams
论混凝土坝抗震设计与计算中混凝土动态弹性模量的合理取值
5) conversion elastic modulus
换算弹性模量
1.
Based on some reasonable hypotheses and the stress-strain relationship of concrete obtained by the “adjusting valid modulus depending on age” method, a compact formula to calculate the conversion elastic modulus of the core concrete is presented, which can consider both the influences of creep and the interaction between steel and concrete.
在合理的假设前提下,采用“龄期调整的有效模量法”得到的混凝土徐变方程式,推导出钢管核心混凝土的换算弹性模量计算公式,该公式能综合考虑混凝土的徐变影响和钢-混凝土之间的相互作用,将其应用到钢管混凝土拱桥的徐变分析中,极大简化了徐变分析过程。
2.
Applying the conversion elastic modulus and conversion coefficient of load, the computer model for calculation of creep secondary internal force for continuous beam bridges is established.
应用换算弹性模量和荷载换算系数 ,建立了计算连续梁桥徐变次内力的计算模型。
6) conversion elestic modulus method
换算弹性模量法
1.
The origin of formula for ageing coefficient in conversion elestic modulus method is clarified by two simple bridge examples.
用两个简单的桥例阐明了换算弹性模量法中老化系数公式的由来。
补充资料:表观弹性模量
分子式:
CAS号:
性质: 在减震橡胶制品中,由于橡胶与金属黏着界面的形状效应,不能仅由形状尺寸和橡胶的弹性模量来决定不同方向的弹簧常数,为此将表观弹性模量Eap定义为:圆柱形:Eap=(3+4.9355S2)G正方形:Eap=(3+6.580S2)G无限长柱:Eap=(4+3.290S2)G式中G为剪切弹性模量,S为形状因子。
CAS号:
性质: 在减震橡胶制品中,由于橡胶与金属黏着界面的形状效应,不能仅由形状尺寸和橡胶的弹性模量来决定不同方向的弹簧常数,为此将表观弹性模量Eap定义为:圆柱形:Eap=(3+4.9355S2)G正方形:Eap=(3+6.580S2)G无限长柱:Eap=(4+3.290S2)G式中G为剪切弹性模量,S为形状因子。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条