1) Piecewise Lyapunov function
分段Lyapunov函数
1.
Piecewise Lyapunov function is utilized to demonstrate the stability and H∞ performance of the system.
根据特性将系统建模为切换系统,利用分段Lyapunov函数对系统的稳定性及H∞性能进行论证,并以线性矩阵不等式(LMI)形式给出H∞控制器需满足的条件。
2.
Discrete T-S fuzzy model is considered as uncertain linear system,and a controller design method based on linear matrix inequality(LMI) and piecewise Lyapunov function is proposed.
为了探讨模糊控制系统的稳定性分析和设计方法,依据模糊控制理论,把离散T-S模糊模型看成是一个线性不确定系统,提出了基于线性矩阵不等式和分段Lyapunov函数的模糊控制器设计方法。
3.
Consequently,based on the piecewise Lyapunov function and considered the interactions among the fuzzy subsystems in each subregion,the relaxed stabilization conditions are derived for the switching DFBS.
然后,基于分段Lyapunov函数,同时考虑同一个子空间内不同模糊子系统之间的相互作用,得到了闭环系统放松的渐近稳定的充分条件。
2) continuous piecewise Lyapunov functions
连续分段Lyapunov函数
1.
Sufficient condition of stability is given by using continuous piecewise Lyapunov functions.
本文分析了在特定切换控制函数作用下,切换系统的稳定性,用连续分段Lyapunov函数讨论了切换系统稳定的充分条件。
3) Piecewise Fuzzy Lyapunov Function
分段模糊Lyapunov函数
1.
Analysis and Design of Fuzzy Systems Based on Piecewise Fuzzy Lyapunov Function;
基于分段模糊Lyapunov函数的模糊系统分析与设计
2.
Firstly, a new sufficient condition to check the stability of open-loop discrete T-S fuzzy systems is proposed after the definition of a discrete piecewise fuzzy Lyapunov function.
研究了基于分段模糊Lyapunov函数的离散T-S模糊控制系统稳定性分析及控制器设计问题。
4) piece-wise quadratic Lyapunov function
分段二次Lyapunov函数
1.
A piece-wise quadratic Lyapunov function is used over the entire state region to transform the stability of the closed-loop MPC system into a linear matrix inequality problem,which can be efficiently solved using available convex programming algorithms.
通过在PWA模型的状态分区上,寻找分段二次Lyapunov函数,把闭环预测控制系统的稳定性分析问题转化为线性矩阵不等式(linear matrix inequality,LMI)问题,并应用现有的高效凸规划算法来求解。
5) piecewise quadratic Lyapunov function(PQLF)
分段二次Lyapunov函数(PQLF)
补充资料:高斯函数模拟斯莱特函数
尽管斯莱特函数作为基函数在原子和分子的自洽场(SCF)计算中表现良好,但在较大分子的SCF计算中,多中心双电子积分计算极为复杂和耗时。使用高斯函数(GTO)则可使计算大大简化,但高斯函数远不如斯莱特函数(STO)更接近原子轨道的真实图象。为了兼具两者之优点,避两者之短,考虑到高斯函数是完备函数集合,可将STO向GTO展开:
式中X(ζS,A,nS,l,m)定义为在核A上,轨道指数为ζS,量子数为nS、l、m 的STO;g是GTO:
其变量与STO有相似的定义;Ngi是归一化常数:
rA是空间点相对于核A的距离;ci是组合系数;K是用以模拟STO的GTO个数(理论上,K→∞,但实践证明K只要取几个,便有很好的精确度)。
ci和ζ在固定K值下, 通过对原子或分子的 SCF能量计算加以优化。先优化出 ζS=1 时固定K值的ci和(i=1,2,...,K),然后利用标度关系式便可得出ζS的STO展开式中每一个GTO的轨道指数,而且,ci不依赖于ζS,因而ζS=1时的展开系数就是具有任意ζS的STO的展开系数。对不同展开长度下的展开系数和 GTO轨道指数已有表可查。
式中X(ζS,A,nS,l,m)定义为在核A上,轨道指数为ζS,量子数为nS、l、m 的STO;g是GTO:
其变量与STO有相似的定义;Ngi是归一化常数:
rA是空间点相对于核A的距离;ci是组合系数;K是用以模拟STO的GTO个数(理论上,K→∞,但实践证明K只要取几个,便有很好的精确度)。
ci和ζ在固定K值下, 通过对原子或分子的 SCF能量计算加以优化。先优化出 ζS=1 时固定K值的ci和(i=1,2,...,K),然后利用标度关系式便可得出ζS的STO展开式中每一个GTO的轨道指数,而且,ci不依赖于ζS,因而ζS=1时的展开系数就是具有任意ζS的STO的展开系数。对不同展开长度下的展开系数和 GTO轨道指数已有表可查。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条