说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 现代内点算法
1)  modern interior point method
现代内点算法
2)  modern interior point method
现代内点法
1.
The method based modern interior point method of optimizing the plus parameters in nowadays CPS control strategy is proposed and the mathematic model is established.
针对目前电网的发展状况,介绍了现行的NERC制定的CPS标准,提出了一种应用现代内点法优化CPS控制策略中增益系数的方法,并建立了数学模型,为CPS标准在AGC考核中的优化提供了一种新方法。
2.
An approach based on modern interior point method to optimize the gain coefficient in the current CPS control strategy is proposed and the mathematic model is established.
分析了北美电力可靠性委员会(NERC)的CPS标准,提出了应用现代内点法优化现行CPS控制策略中增益系数的方法,并建立了数学模型,为CPS标准在AGC考核中的应用提供了一种新的优化方法。
3)  interior-point-iterative algorithm
内点迭代算法
1.
This paper presents a new iterative method which is called interior-point-iterative algorithm for solving the bi-obstacle problems.
介绍一种解决双障碍问题的迭代算法,该算法称之为内点迭代算法。
4)  interior point algorithm
内点算法
1.
A primal-dual infeasible interior point algorithm for semidefinite programming was proposed.
对于半定规划问题,通过构造适当的搜索方向,给出了一个原始-对偶不可行内点算法。
2.
The interior point algorithm using similar mapping transformation is applied to reliabilityevaluation of power system.
提出基于仿射变换的内点算法求解大规模电力系统可靠性评估。
3.
A new interior point algorithm based on the general power transformation is developed.
分析了对线性互补问题的中心化方程xs=μe实施代数等价变换的作用,揭示出彭积明等人近期提出的自正则邻近度量方法相当于一种等价的幂变换,并在更一般的基础上,建立了一个基于幂变换的内点算法。
5)  interior-point algorithm
内点算法
1.
An interior-point algorithm of changing ellipsoids radius for convex programming;
凸规划的一种变椭球半径的内点算法
2.
A high-order affine scaling interior-point algorithm for solving P_*(κ)-matrix linear complementarity problems;
求解P_*(κ)-阵线性互补问题的高阶仿射尺度内点算法
3.
Primal-dual predictor-corrector interior-point algorithm is presented to solve SDP problems in these fields.
为了更好地求解这些领域中遇到的半定规划问题,给出了半定规划的原始对偶预估校正内点算法。
6)  interior point method
内点算法
1.
The proposed OPF problem with typical nonlinearity is solved by interior point method.
所提模型是一个典型的非线性规划模型,采用内点算法求解。
2.
Successive linear programming based on interior point method has been widely applied in the power system for its advantage of flexible disposal of the tolerances and not having to shape the Hessen matrix.
文中基于现代内点理论提出一种改进的信赖域内点算法。
3.
To improve the adaptability of OP F(Optimal Power Flow)algorithm,a symbolic interior point method based on the perturbed KKT condition is presented,which applies Matlab’s symbolic math too lbox.
为提高最优潮流算法的通用性,利用Matlab符号计算工具箱完成了一种基于扰动KKT条件的内点算法最优潮流的符号计算。
补充资料:不动点算法
      又称固定点算法。所谓不动点,是指将一个给定的区域A,经某种变换??(x),映射到A时,使得x=??(x)成立的那种点。最早出现的不动点理论是布劳威尔定理(1912):设A为Rn中的一紧致凸集, ??为将A映射到A的一连续函数,则在A中至少存在一点x,使得x=??(x)。其后,角谷静夫于1941年将此定理推广到点到集映射上去。设对每一x∈A ,??(x)为A的一子集。若??(x)具有性质:对A上的任一收敛序列xi→x0,若 yi∈??(xi)且yi→y0,则有y0∈??(x0),如此的??(x)称为在A上半连续,角谷静夫定理:设A为Rn中的一紧致凸集,对于任何x∈A,若??(x)为A的一非空凸集,且??(x)在A上为上半连续,则必存在x∈A,使x∈??(x)。J.P.绍德尔和J.勒雷又将布劳威尔定理推广到巴拿赫空间。
  
  不动点定理在代数方程、微分方程、积分方程、数理经济学等学科中皆有广泛的应用。例如,关于代数方程的基本定理,要证明??(x)=0必有一根,只须证明在适当大的圆│x│≤R 内函数??(x)+x有一不动点即可;在运筹学中,不动点定理的用途至少有二:一为对策论中用来证明非合作对策的平衡点的存在和求出平衡点;一为数学规划中用来寻求数学规划的最优解。对于一个给定的凸规划问题:min{??(x)│gi(x)≤0,i=1,2,...,m},在此,??和g1,g2,...,gm皆为Rn中的凸函数。通过适当定义一个函数φ,可以证明:若上述问题的可行区域非空,则φ的不动点即为该问题的解。
  
  在1964年以前,所有不动点定理的证明都是存在性的证明,即只证明有此种点存在。1964年,C.E.莱姆基和 J.T.Jr.豪森对双矩阵对策的平衡点提出了一个构造性证明。1967年,H.斯卡夫将此证法应用到数学规划中去。其后,不动点定理的构造性证明有了大的发展和改进。
  
  H.斯卡夫的证明是基于一种所谓本原集,后来的各种发展皆基于某种意义下的三角剖分。现以n 维单纯形Sn为例来说明这一概念,在此,。对每一i, 将区间0≤xi≤1依次分为m1,m2...等分,m12<...,mi→,是给定的一列正整数。对于固定的i,过分点依次作平行于xi=0的平面。 这些平面将Sn分成若干同样大小的n维三角形。它们的全体作成的集 Gi,称为Sn的一三角剖分。设??(x)为 Sn→Sn的一连续函数,x=(x1,x2,...,xn+1),??(x)=(??1(x),??2(x),...,??n+1(x))。定义。由于??(x)和x皆在Sn上,若有则显然有??(x)=x,即x为??(x)的一不动点。
  
  对每一点y∈Sn赋与标号l(y)=k=min{j│y∈Cj,且yj>0}。由著名的施佩纳引理,在Gi中必存在一三角形σi,它的n+1个顶点yi(k)的标号分别为k(k=1,2,...,n+1)于是可得一列正数ij(j→),使得(k)→yk,k=1,2,...,n+1。根据σi的作法,当ij→时,收敛成一个点x。故yk=x,k=1,2,...,n+1。因 (k)的标号为k,故yk∈Ck,因而即x为所求的不动点。因此,求??(x):Sn→Sn 的不动点问题就化为求 σi(i=1,2,...) 的问题。为了计算上的效果,除了上述的标号法之外,还有标准整数标号法、向量标号法等等。关于如何求σi,有变维算法、三明治法、同伦算法、变维重始法等等,通过适当定义,可将上之Sn改为Rn或Rn中之一凸集。求一凸函数在一凸集上的极值问题也可化为求不动点问题。一般说来,这条途径适用于维数不高但问题中出现的函数较为复杂的情况。
  
  

参考书目
   A.J.J.TalmanVariable Dimension Fixed Point Algorithms and Triangulations, Mathematisch Centrum, Amsterdam, 1980.
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条