说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 多重完全多部图
1)  λ-fold complete multipartite graph
多重完全多部图
1.
G-design of λ-fold complete multipartite graph where G is three kinds of graphs with five points;
关于三类五点图的多重完全多部图设计
2.
The existence of G-design ofλ-fold complete multipartite graph is discussed where G is the 3-path and a stick necessary and sufficient conditions are given for the G-design ofλKn(t).
讨论了G为有一条悬边的三长路时,多重完全多部图的G-设计的存在性。
3.
Let λKn(g)be aλ-fold complete multipartite graph and G be a finite simple graph.A(λKn(g),G)-design is a partition of the edges ofλKn(g)into sub-graphs each of which is isomorphic to G.In this paper the existence of a G-design ofλKn (g)was discussed where G is the 4-cycle and a stick.Necessary and sufficient conditions were given for theλKn(g)-design
在此基础上讨论了G为有1条悬边4长圈时多重完全多部图的G-设计的存在性。
2)  complete bipartite multigraph
完全二部多重图
1.
K1,pq - factorization of complete bipartite multigraphs;
完全二部多重图的K_1,pq-因子分解(英文)
2.
LetλK_(m,n) be a complete bipartite multigraph with two partite sets having m and n vertices, respectively.
λK_(m,n)是完全二部多重图,它的两个部分点集X和Y分别具有m和n个点。
3)  complete multipartite multigraph
完全多部重图
4)  complete multipartite graph
完全多部图
1.
On property M(5) of some complete multipartite graphs;
完全多部图的M(5)性质
2.
Mandatory decomposition of complete multipartite graph into cycles of lengths 3,4 and 5;
关于完全多部图K_n(t)的{C_3,C_4,C_5}-强制分解
3.
It is easy to see that Ohba s conjecture is true if and only if it is true for complete multipartite graphs.
容易发现Ohba猜想成立的条件是当且仅当它对完全多部图成立,但是目前只是就某些特殊的完全多部图的图类证明了Ohba猜想的正确性。
5)  complete multipartite graphs
完全多部图
1.
The concept Mandatory Decomposition is introduced in the paper, proving the existence of{C 3, C 4}- and{C 3, C 6}- mandatory decompositions of complete multipartite graphs K r(t).
引入图的强制分解的概念 ;证明了完全多部图Kr(t)的 {C3,C4 } -和 {C3,C6 } -强制分解的存在
6)  balanced bipartite multigraphs
平衡完全二部多重图
1.
In this paper,it is shown that a necessary and sufficient condition for the existence of a p2k + 1 - factorization of the balanced bipartite multigraphsλK n,n is n ≡ 0 (mod 4k(2k + 1)/d), where d = gcd(λ,4k)≠1.
给出了当d=gcd(λ,4k)≠1时,平衡完全二部多重图λKn,n存在P2k+1-因子分解的充分必要条件为n=0(mod 4k(2k+1)/d)。
补充资料:萨婆多部
【萨婆多部】
 (流派)小乘二十部之一。即说一切有部也。(参见:说一切有部)
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条