说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 三角Bézier曲面逼近
1)  triangular Bézier surface approximation approach
三角Bézier曲面逼近
2)  Triangular Bézier Surface
三角Bézier曲面
1.
Based on the property of Jacobi polynomials and the solution of conditional extremum,the approximate merging of 4 neighbouring triangular Bézier surfaces with boundary constraints are discussed.
基于Jacobi基的性质以及条件极值问题的求解,对4片相邻三角Bézier曲面进行了近似合并。
3)  triangular Bernstein-Bézier patch
三角Bernstein-Bézier曲面
1.
Based on the Delaunay triangulation method in unstructured grid generation,an approach is proposed which controls grids distribution by cubic triangular Bernstein-Bézier patches.
基于生成非结构化网格的Delaunay三角形化方法,应用三次三角Bernstein-Bézier曲面来控制网格点的分布情况。
4)  triangular Bézier surfac
三角Bézier曲面片
5)  triangular Bézier patches
Bézier三角曲面片
1.
In order to simplify the problem of smoothing connection of triangular Bézier patches around a common vertex,a system of equations about the interpolating data is obtained according to the geometric feature of smoothing connection and consistence conditions.
为了降低绕一角点的Bézier三角曲面片光滑拼接的难度,根据曲面光滑拼接的几何特征和相容性条件构造了插值数据应满足的方程组,利用方程组有解的条件得到绕一角点的多项式曲面片G1,G2和高斯曲率连续拼接的方法;然后利用重心坐标和直角坐标的关系将多项式曲面片转化为Bézier三角曲面片,得到相应的绕一角点的Bézier三角曲面片光滑拼接的方法。
6)  trigonometric Bézier curve
三角Bézier曲线
1.
A class of trigonometric Bézier curves with two exponential shape parameters;
一类形状参数为指数的三角Bézier曲线
2.
A trigonometric Bézier curve is constructed to approximation the ship line-plane cubic piecewise curve.
在对形状参数为λ,μ的三角Bézier曲线的基函数及曲线端点特性分析的基础上,选择三角Bézier曲线中的控制参数和控制顶点,构造一条符合船体放样要求的三角Bézier曲线来逼近船型曲线(平面三次分段曲线),结果表明三角Bézier曲线是局部存在的,并且增强了三角Bézier曲线的控制及逼近曲线形状的能力,此法直观、简明,易于操作,并可进一步推广到其它曲线或曲面的逼近。
补充资料:Padé逼近


Padé逼近
Pate approximation

  幂级数的一种最佳有理逼近.设 f(:)二艺f*zk(l) k启0为任一(形式上的或收敛的)幂级数,n,m)0,为整数,R。t。是形如p/q的所有有理函数类,其中p与q是关于乞的多项式,魄q(川,吨p(。且q举0.级数(l)(函数f)的(n,m)型Pa由逼近(几叱appro刀rr‘nt)是函数类R,,,中与幂级数(l)在点艺二o有最大可能切触阶的有理函数兀。二〔R。。.更确切地说,函数二。,.由条件 。(f一二。,.)二max{a(f一r):r〔R。,}确定,其中,a(甲)是级数 甲一艺甲*:‘ k留0中第一个非零系数的下标. 也可以将函数二。.定义为满足条件 deg夕簇n,degq簇m, (叹f一p)(z)=A。,,z”+‘+’+…(2)的任意两个多项式p和q(q举0)的商p/q. 对于固定的n,m,幂级数(l)存在唯一的R玉de逼近叭.,·表毛7r。,。}筑,~。称作是级数(l)的Pa击奉(胁table).形如{“。,.}爪。的序列称作为耻表的行(rows of the Pad亡tabk)(零行恰好是f的Tavlor多项式序列);称{叭,。}二一。为几必表的列;而{7r,,J,。}界。则被称作P队记表的对角线.最重要的特殊情形j二O是P以记表的主对角线. 函数兀。二的计算归结为求解一个线性方程组,其系数可借助于给定幂级数的系数f*,k二0,…,”十m来表示.如果Han拙1矩阵(Hallkelrr心tr议) [了。_。十tf。_.十2…f.1 △__二]---一”一””! tf·f…“‘f一,」有非零的行列式,则函数二。,.的分母q。,,由下述公式给出 }二了。二:} 11八。,。乙l q。,Lz)=,获丁丁甲一一一丁l::{ det(△。.)}二_‘} 一”’…‘;篇,‘二zf”‘:…(规范化条件为q。,,(o)二1;也可写出函数二,,,的分子的显式表达式).并且 (f一究。,,)(:)=A。,.:”十’十’+.…有时用上述关系式来定义氏说逼近;但此种情形下的Pa成逼近对某个确定的(儿,m)不一定会存在.给定幂级数f的(n,m)型P以企逼近常用符号 「n/m】=[n/m】,记之. 为了有效地计算R记己逼近,不采用显式公式,而利用Pad亡表中存在的递推关系将更为方便.大量的算法已被建立用于Pa叱逼近的机器计算;这些问题在实际应用中具有特别重要的意义(见「川,【18」). A.L.Cauchy“1])首先研究了利用R。.。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条