1) eigenvector method
特征向量法
1.
A novel eigenvector method for calculation of optical resonator modes and beam propagation;
一种新颖的用于光腔模式及光束传输模拟的特征向量法
2.
Using the priority theory of complementary judgement matrices and the optimization method,the paper aims at proposing the analytic hierarchy process(AHP) method based on the eigenvector method of the complementary judgement matrices.
在互补判断矩阵排序理论的基础上,结合最优化方法,将互补判断矩阵特征向量法引入层次分析中,提出了一种基于互补判断矩阵特征向量法的层次分析方法。
3.
First,interzone figure judge matrix must be constructed;second,using interzone figure eigenvector method to evaluate the balanced vector;last,evaluating the combined interzone vector and the taxis expon.
首先构造区间数判断矩阵,然后运用区间数特征向量法(IEM)求取权重向量,最后求出层次的组合区间权及排序指数,得出最佳方案。
2) eigenvalue eigenvector analysis
特征值-特征向量法
3) weighted eigenvector approach
加权特征向量法
4) eigenvector method
特征向量方法
1.
Multi-attribute decision-making based on subjective and objective integrated eigenvector method;
多属性决策的主客观结合特征向量方法(英文)
2.
An integrated eigenvector method is proposed to combine the subjective preference information with the objective information.
提出一种结合主观偏好信息与客观信息的综合特征向量方法。
5) eigenvector algorithm
特征向量算法
1.
A new blind equalization algorithm based on eigenvector algorithm(EVA) was presented to solve the phase rotation problem by employing metric including phase information of the channel, and a comparison between new algorithm and EVA was also made.
为解决盲均衡算法中的相位旋转问题,提出了一种基于特征向量算法(EVA)的改进型盲均衡算法,并与EVA算法进行了比较。
6) the positive character vector method
正特征向量法
补充资料:特征值和特征向量
特征值和特征向量 characteristic value and characteristic vector 数学概念。若σ是线性空间V的线性变换,σ对V中某非零向量x的作用是伸缩 :σ(x)=aζ ,则称x是σ的属于a的特征向量 ,a称为σ的特征值。位似变换σk(即对V中所有a,有σk(a)=kα)使V中非零向量均为特征向量,它们同属特征值k;而旋转角θ(0<θ<π)的变换没有特征向量。可以通过矩阵表示求线性变换的特征值、特征向量。若A是n阶方阵,I是n阶单位矩阵,则称xI-A为A的特征方阵,xI-A的行列式 |xI-A|展开为x的n次多项式 fA(x)=xn-(a11+…+ann)xn-1+…+(-1)n|A|,称为A的特征多项式,它的根称为A的特征值。若λ0是A的一个特征值,则以λ0I-A为系数方阵的齐次方程组的非零解x称为A的属于λ的特征向量:Ax=λ0x。L.欧拉在化三元二次型到主轴的著作里隐含出现了特征方程概念,J.L.拉格朗日为处理六大行星运动的微分方程组首先明确给出特征方程概念。特征方程也称永年方程,特征值也称本征值、固有值。固有值问题在物理学许多部门是重要问题。线性变换或矩阵的对角化、二次型化到主轴都归为求特征值特征向量问题。每个实对称方阵的特征根均为实数。A.凯莱于19世纪中期通过对三阶方阵验证,宣告凯莱-哈密顿定理成立,即每个方阵A满足它的特征方程,fA(A)=An-(a11+…+ann)An-1+…+(-1)n|A|I=0。 |
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条