说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 非正交曲线坐标
1)  non-orthogonal curvilinear coordinates
非正交曲线坐标
1.
3-D turbulent model of meandering river in non-orthogonal curvilinear coordinates;
非正交曲线坐标下三维弯曲河流湍流数学模型
2.
The 3-D RNG k-ε turbulence hydrodynamic model in non-orthogonal curvilinear coordinates is established in this paper.
本文采用非正交曲线坐标下的三维RNG k-ε双方程湍流数学模型,该模型在水平方向采用非正交曲线坐标,在垂直方向采用等分网格的全坐标变换,采用由二维深度平均方程演化而来的2-D泊松方程计算三维自由水面,应用SIMPLEC程式求解方程。
2)  non-orthogonal curvilinear coordinate
非正交曲线坐标
1.
Simulation of 2-D cooling water in non-orthogonal curvilinear coordinate;
非正交曲线坐标系平面二维电厂温排水模拟
2.
For analyzing the influence of Xin andu bridge on flood control,the paper builds a 2-D non-orthogonal curvilinear coordinate flow mathematical model which applied to the Lunhe River.
沦河上修建桥梁必然会对河道水位和流态产生影响,为了分析辛安渡大桥对沦河的防洪影响情况,建立了非正交曲线坐标下平面二维水流数学模型,并应用该模型对沦河修建辛安渡大桥前后的水流情况进行了模拟。
3.
Through applying a numerical model of plane river flow in non-orthogonal curvilinear coordinate in the simulation of 2-D flow near the groyne,the shortcomings of orthogonal curvilinear coordinate in simulation of local places with irregular boundaries are successfully avoided.
非正交曲线坐标系下的平面二维河道水流数学模型应用于丁坝绕流计算,克服了正交网格在对不规则边界进行局部模拟时存在的一些缺陷。
3)  nonorthogonal curvilinear coordinate system
非正交曲线坐标系
1.
The three-dimensional compressible boundary layer flow for a general fuselage with suction is investigated computationally by means of the boundary layer equation for a nonorthogonal curvilinear coordinate system.
采用了非正交曲线坐标系边界层方程,通过修改矢量流函数关系式,将壁面法向速度转变成为控制方程的一个可调参数,从而消除了边界条件与方程未知参量之间的非线性耦合;所发展的横向分段推进数值技术,可用于计算横流速度在横向多次反号的复杂边界层流动;设计不同的壁面抽吸系数分布,以研究边界层控制对多种边界层特性的影响。
4)  orthogonal curvilinear coordinate system
正交曲线坐标系
1.
The solution of acceleration in orthogonal curvilinear coordinate system through resultant motion;
正交曲线坐标系中加速度的合成运动求法
2.
The equations of wave propagation in piezoelectric cylindrical bent rods were established in an orthogonal curvilinear coordinate system (r,s).
通过在正交曲线坐标系中建立弹性波在压电圆柱曲杆中传播的控制方程,结合给定的侧面边界条件,求得波在压电圆柱曲杆中传播的前三阶频散关系和位移与电势在横截面上的分布情况。
5)  orthogonal curvilinear coordinates
正交曲线坐标
1.
Numerical solution of 2-D tidal flow of the estuary in orthogonal curvilinear coordinates;
正交曲线坐标下河口二维潮流过程计算
2.
By introducing reasonable fundamental assumptions and the Green strain in orthogonal curvilinear coordinates,geometric equations expressed by the Green strain tensor for solving thin shells with large deformation are derived in this paper.
将正交曲线坐标下的格林应变张量引入到薄壳大变形分析,通过建立恰当的基本假设,直接导出了用格林应变张量表示的壳体变形几何方程,将该方程代入到本构方程,由能量原理得到了小应变非线性变形平衡方程、内力方程和边界条件,在此基础上提出了大应变变形的简化分析方法。
3.
By defining “generalized velocities” and “generalized accelerations”, velocities and accelerations in orthogonal curvilinear coordinates are obtained.
引入“广义速度”和“广义加速度”的概念,把正交曲线坐标系中的速度和加速度简化为对广义坐标及其微商的偏导。
6)  orthogonal curvilinear coordinates
正交曲线坐标系
1.
When the Lame coefficient and unit vector which characterize the strain tensor of Cartesian coordinates are given anew and substituted into orthogonal curvilinear coordinates it is found that the strain tensor in Cartesian coordinates is the function of Lame coefficient and unit vector.
将表征笛卡儿坐标系度量张量的拉梅系数与单位向量重新赋予后,代入正交曲线坐标系中,发现笛卡儿坐标系的应变张量为其拉梅系数与单位向量的函数。
2.
By matrices and a derivative formula,a simple method of deriving accelerations in orthogonal curvilinear coordinates based on variable transformation is proposed.
利用矩阵和一个微商公式,把变量替换法求正交曲线坐标系中加速度运算的繁琐程度大为降低。
3.
In this paper,the direct method of vector differentiation in orthogonal curvilinear coordinates is improved,based on the ideas of H·T·Yang and others.
本文在H·T·Yang等人的基础上,进一步完善了正交曲线坐标系中矢量微分的直接方法。
补充资料:位形坐标曲线
      解释电子-声子相互作用的一种物理模型。在晶体中,一个杂质离子的电子能量状态,决定于周围离子的位置,而这些离子的位置反过来又受电子能态的影响。因为电子由一个能级跃迁到另一个能级意味着其轨道的变化,这种变化通过静电相互作用而改变周围离子所受的力,从而改变其平衡位置。因此,在考虑这个杂质离子的激发和发光时,不但应该考虑电子的跃迁,还应该考虑周围离子的位置变化。笼统地用一个坐标来代表离子的位置,作为横轴,而从纵轴表示电子-离子系统的能量,包括电子能量和离子势能,这就是位形坐标曲线。由于点阵离子的振动模式不只一种,电子-离子系统所包括的离子也不应仅是最近邻的离子,因此用一个或少数几个坐标来代表所有离子的位置显然是过份简单了。但是由于这种坐标模型考虑到电子和点阵间的相互作用这个最根本的问题,所以它能解释相当多的实验现象。
  
  图中曲线代表离子位置变化时系统的能量的改变情况,也可以看作是电子在某一状态时离子的势能曲线。横轴是离子位置r,纵轴是能量。下面一条曲线是在基态时系统的能量随位形坐标的变化,上面一条对应电子在激发态时系统的能量随位形坐标的变化。A到B是吸收,C到D代表发光,E是电子基态和激发态的能量差,水平短横线代表离子的振动能级。用这样的模型,可以说明斯托克斯规则,说明吸收光谱和发射光谱为什么有一个宽度及其随温度变化的规律,说明温度升高发光强度会下降等等,不但能作定性的解释,而且在某些情况下能得到和实验符合的定量的结果。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条