1) non-negative bounded function
非负有界函数
2) nonnegative function
非负函数
1.
Taking Cauchy convergence theorem as the basis,puts forward a new discriminance to decide convergence or divergence of two kinds of generalized integral of nonnegative function f(x),demonstrates the accuracy and effectiveness of this discriminance by proving.
以柯西收敛定理为基础,提出了非负函数f(x)的两类广义积分敛散性的一种新的判别方法,通过证明论证了该方法的正确性和有效性。
2.
New methods for discriminating convergence of nonnegative function s infinite integral are given.
本文建立了非负函数无穷积分敛散性的几个新判别法,讨论了这些判别法所对应的比较对象,说明了它们的精细程度。
3) bounded function
有界函数
1.
From this,it is proved that when all the ratios of a subaddtive function defined on the interval(0,+∞) to the value of its variable form a bounded function,the subaddtive function must have supremum and infimum functions,which are homogeneously linear functions.
从这一结果出发证明了,当定义在(0,+∞)上的次可加函数与其自变量之比为有界函数时,次可加函数必存在上下确界函数,并证明了其上下确界函数均为齐次线性函数。
2.
In this paper,a proof is made of the equivalence in three definitions of the integral of bounded function in finite set measure.
关于Lebesgue积分,文献有不同的定义,本文给出了测度有限集上有界函数Lebesgue积分三种不同定义的等价性的一种证明。
3.
This paper gives a concept of Lebesgue-Stieltjes measure in monotone increasing left continuous bounded function and discuss some properties.
以单调递增左连续有界函数 f 给出了 Lebesgue-Stieltjes测度的概念 ,进一步讨论了由它产生的若干相应的性
4) bounded functions
有界函数
1.
The derivation of bounded functions;
有界函数的导数(英文)
2.
This paper investigates the approximation properties of BS-Bézier operators for bounded functions.
研究BS-Bézier算子列关于一般有界函数的逼近性质,得到其收敛阶的精确估计。
5) nonnegativity of function
函数非负性
1.
As well,the decision method of nonnegativity of function are given,and be used in the proof of function inequality in this paper.
然后再给出函数非负性的一种判定方法,并将其应用到函数不等式的证明中。
6) almost bounded function
殆有界函数
补充资料:非想非非想处天
1.佛教语。即三界中无色界第四天。此天没有欲望与物质﹐仅有微妙的思想。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条