1) Bayesian filtering
贝叶斯滤波
1.
Aiming at the problem of targe tracking in Bayesian filtering process,some typical Bayesian filtering methods such as EKF,UKF,PF and UPF are proposed.
针对贝叶斯滤波过程中存在的目标跟踪问题,提出几种典型的贝叶斯滤波方法,如EKF,UKF,PF和UPF等,基于这些方法所构建的框架,对它们进行性能测试和比较,并在非线性环境下,讨论这些方法的特点,仿真实验结果表明,在非线性非高斯环境下,UPF方法的性能是最优的。
4) Bayesian filter theory
贝叶斯滤波理论
1.
To solve localization problems of autonomous robots,self-localization methods based on Bayesian filter theory are investigated.
针对自主机器人定位问题,研究了基于贝叶斯滤波理论的自定位方法。
5) Extended Bayesian filter
扩展贝叶斯滤波
6) Bayesian methods
贝叶斯滤波原理
补充资料:贝叶斯公式
贝叶斯公式为利用搜集到的信息对原有判断进行修正提供了有效手段。在采样之前,经济主体对各种假设有一个判断(先验概率),设为,{}。
关于先验概率的分布,通常可根据经济主体的经验判断确定(当无任何信息时,一般假设各先验概率相同),较复杂精确的可利用包括最大熵技术或边际分布密度以及相互信息原理等方法来确定先验概率分布。
当采样得到样本值后,当事人对各假设的判断(后验概率)为
关于先验概率的分布,通常可根据经济主体的经验判断确定(当无任何信息时,一般假设各先验概率相同),较复杂精确的可利用包括最大熵技术或边际分布密度以及相互信息原理等方法来确定先验概率分布。
当采样得到样本值后,当事人对各假设的判断(后验概率)为
,= 1, 2, %26#8230;, (5.5)
在实际经济生活中,信息搜寻工作不是一次就完成的。当信息搜寻进行到某一阶段,设已进行了 次采样( =1,2,%26#8230;),此时经济主体对各假设的后验概率的认识为
=1, 2, %26#8230;, (5.6)
其中,表示在第次采样前对假设的判断,当 =1时即表示第一次采样前的先验概率,从而式(5.5)变成式(5.6)的一个特例,即,将其记为。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条