说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> Stein估计
1)  Stein estimators
Stein估计
1.
Research of improvement of Stein estimators of coefficients in linear regression models;
线性回归模型系数Stein估计的改进研究
2.
It is proved that the Stein estimators can be improved by minimizing the mean square error of the generalized c-K estimators or by specializing matrix K respectively,and the optimal values of the parameters are also obtained.
针对引起线性回归模型LS估计性能变坏的根本原因,提出了回归系数的广义c-K估计,将众多经典的有偏估计结合在一起,对有偏估计的改进进行了研究,分别证明了最小化均方误差和数量化矩阵K均可对Stein估计进行改进,给出了参数的最优值,为病态线性回归模型系数有偏估计的改进提供了有效途径。
2)  Stein estimation
Stein估计
1.
Whittemore(1989) proposed Stein estimation of the unobserved true covariates,provided that the measurement error is Gaussian with known variance,when the variances of the measurement errors are equal in different observed points.
Whittemore(1989)针对在各观测点等误差的情形提出了一种参数估计的方法,其基本思想是:当观测误差来自方差已知的高斯分布时,用带有观测误差的观测样本的Stein估计代替不可观测的协变量的真实值。
3)  Stein estimator
Stein估计
1.
Then we discuss the superiority of the Stein estimator over LS estimator under Pitman closeness (PC) criterion.
本文在广义均方误差(GMSE)准则下给出了回归系数β的Stein估计优于最小二乘(LS)估计的充分必要条件,然后在Pitman Closeness(PC)准则下比较了Stein估计相对于LS估计的优良性。
4)  James-Stein estimator
James-Stein估计
1.
The necessary and sufficient condition that James-Stein estimator were better than least square (LS) estimator based on the balanced loss function.
在平衡损失下给出了回归系数James -Stein估计优于最小二乘 (LS)估计的充要条件 ,得到了在Pitmanclose ness准则下James-Stein估计相对于LS估计的优良性 。
5)  Stein-typed estimations
Stein型估计
1.
The purpose of this paper is to modify three calsses of biased estimations (Stein-typed estimations, double-h ridged estimations, double-l ridged estimations) so that these improved estimations could always be better than the least squared estimation in the sense of MSE.
对线性模型中回归系数的Stein型估计,双h类估计和双l类估计作了改进,使得它们在设计阵的任何情形下都能一致优于最小二乘估计。
6)  two-step Stein estimate
两步Stein估计
1.
Taking two-step Stein estimate and Pitman criterion for instance,the purpose of this text is to explain two-step estimates rationality under other criteria from the angle of protecting.
我们以两步Stein估计为例,给出了它在Pitman准则下仍具有优良性的结果。
补充资料:Behnke-Stein定理


Behnke-Stein定理
Behnke Stein theorem

  Behnke一Stein定理{】khnke一Stein theore「n;1翻汉,耽U】Te俪a TeO碑M。] 设全纯域G、C=C”k=1,2,…,其中对所有的k有G;CG*刊,则它们的并仍然是全纯域·Behnke一stein定理不仅对复Eudid空间C”成立,而且对任何Stein流形(stein manifold)也成立.如果序列G*在嵌入意义下不是单调增加的,则定理不成立.例如CZ中两全纯域 G,={(z!:2):{:l】·(l,}z:阵艺}和 G:二{(:::2川:、{<2,}::1<玛的并不是全纯域.
  
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条