说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> Adomian分解
1)  Adomian decomposition
Adomian分解
1.
Introducing the Adomian decomposition method,transient analysis is made to the generalized equation with a simulation done as instance for lossless transmission line.
针对传输线电压、电流波的传播特点,采用推广的时间分数阶传输线方程来描述传输线上电压、电流波的反常扩散过程;并应用分数阶Adomian分解方法对时间分数阶传输线方程进行瞬态分析,最后给出了无损传输线传输过程的仿真实例。
2)  Adomian decomposition method
Adomian分解法
1.
Adomian decomposition method for solving dynamic model of immune responses;
应用Adomian分解法求解免疫反应的数学模型(英文)
2.
The analytical solution of a viscoelastic continuous beam whose damping characteristics are described in terms of a fractional derivative of arbitrary order was derived by means of the Adomian decomposition method.
利用Adomian分解法,得到了由任意阶分数微分描述的具有阻尼特性的黏弹性连续梁的解析解。
3.
Using the separation of variables method and Adomian decomposition method,the analytic and approximate solutions of the TFTE with homogeneous and non-homogeneous Dirichlet boundary conditions are obtained,which can be expressed in the form of series,then computed easily.
我们考虑了带初边值条件的时间分数阶电报方程的解问题,借助于变量分离技巧和Adomian分解法,得到该问题分别在齐次和非齐次Dirichlet边界条件下的解析解和近似解,它们都可显式地表示成级数形式,从而易于近似数值计算。
3)  ADM (Adomian Decomposition Method)
ADM(Adomian分解法)
4)  Adomian decomposition method
Adomian分解方法
1.
In this paper,NA-SubE was considered and an approximate solution was constructed by using Adomian decomposition method.
文中对非线性反常次扩散方程进行了研究,利用Adomian分解方法构造一个近似解,并给出一些数值例子来说明这个方法的有效性和简单性。
2.
This paper dealt with a class of half space fractional differential equations of the boundary problem,proved the convergence of the fractional differential equations based on the Caputo fractional derivative by using Adomian decomposition method,and derived a solution in the form of a series by using this method.
研究了一类半空间分数阶微分方程的边值问题,证明了利用Adomian分解方法求解Caputo意义下的分数阶微分方程的收敛性,并利用Adomian分解方法得到了该问题的无穷级数形式的解。
5)  Adomian's asymptotic decomposition method
Adomian渐近分解法
6)  the quick Adomian decomposition method
快速Adomian分解法
补充资料:Bruhat分解


Bruhat分解
Bruhat decompositioa

肠侧巨.分解{肠刚恤t山”潮甲诬叙I卜p肤”paJ,)、e似e 连通代数约化群G表成E匀州子群夭找、l川bgr。叩)的双陪集的井的一种表小式,其陪集代表以G的we贝群(weyl grouP)作参数更确切地说,令BB是约化群G的两个相反的BO川r群,〔‘f分别是B,B的幂么部分,见线性代数群(l Ineafal罗bralc grouP),t干是G的Weyl群.下文中的w既代表体中的一个元素,也表小它在环面刀f一、B的正规化子中的代表元,因为下面所介绍的构造不依赖上代表儿的选择因此.可以对姆一个儿、呀科考虑U、=v自、、Uw‘.厂是‘可表小为不相交的双陪集BwB(、任汗)的并,且态射g、xB,价,B((一丫.门一、、夕)是代数簇的同构.B川hat分解的更精确的陈述将产生投影簇GB的胞腔分解.即设灭是6B的(对护由B中元素所作的左平移)一个不动点(这样的只元总存在,见Borel不动点定理〔 Borel上、xed一「幻In:山。〕rem))·G/B将是形如之/fw(x。))(w6环’)的不相交的U轨道的并,见变换的代数群叱a]罗bfa沁gr(>u。Jtransform掀伯n幼,而态射U奋、今U(w你,))(川,。(、、(、。)))是代数簇的同构.所有的群U,作为簇同构于仿射空间;如果基域是复数域,则上面的每亡f轨道在代数拓扑的意义F是胞腔,万卜是可计算G·刀的同调.对许多典型群,Bnd业t分解的存在性在1956年由卜Bruhat建仓t,一般情况是合che、ralley证明的(口)‘A.Borel和J.Tlts把Bruh叭分解的结构推广列火土定义的代数群的k点的群G、({2J),Bo代l子群的作用由极小抛物六一子群承担,而群厂的作用由它们的幂么根承担;Weyl群计则由Weyl人群体飞或相对We少】群来代替.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条