1) natural spline
自然样条
1.
A bowed blade modeling method based on natural spline is proposed.
提出了一种基于自然样条思想的弯叶片生成方法,推导了其积迭线的解析表达式。
2.
The semiparametric regression is discussed by natural spline fitting.
采用自然样条逼近的数据处理方法 ,探讨了自然样条半参数回归分析方法。
3.
The semiparametric regression method is discussed through natural spline fitting in this paper,at the same time the method is used to analyze and forecast deformation.
本文采用自然样条逼近方法,探讨了自然样条半参数回归分析方法,同时将此方法运用到形变分析与预报数据处理中,结果表明是一种有效的方法。
2) cubic natural spline
三次自然样条
1.
CT images of wood reconstructed 3-D by cubic natural spline function;
为了降低CT扫描的成本,我们尝试用不连续的CT断层扫描和三次自然样条函数来重建三维数据,然后进行虚拟刨切。
3) traditional cubic spline
自然三次样条
4) natural spline space
自然样条空间
1.
A theorem on th dimension of natural spline space in th book by L.
Schumaker关于自然样条空间维数的一个定理。
5) natural spline function
自然样条函数
1.
Using natural spline functions with multiple knots, we discuss the extended Sard approximation of Linear functional.
本文利用具有重结点的自然样条函数,讨论了线性泛函Ff=sum from i=0 to n-1[integral from a to b a_i(x)D~i f(x)dx+sum from j=0 to L~1 b_(ij)D~i f(x_(ij))]的广义Sard逼近问题。
6) Natural cubic interpolating splines
自然三次样条内插函数
补充资料:B样条曲面
B样条曲面
B-spline surface
B yangtiao qumianB样条曲面(Bsp一ine surface)用分段B样条多项式函数及控制点网格定义的面。基于B样条曲线,可以得到B样条曲面的表示式。给定(m+1)(n十l)个空间点列凡(i=0,1,…,m,]=0,1,…,n),则s(二,w)一艺艺尸。从,*(。)凡,,(w),该二0少=O u,功任[0,1」定义了kXz次B样条曲面。式中从,*(u)和凡,,(w)分别是k次和l次的B样条基函数,由凡组成 的空间网格称为B样条曲面的控制点网格。上式 也可写成如下的矩阵式称(u,二)二认呱几M王w王,y任[l,。+2一划 z任[l,n+2一z〕,u,wC〔O,1」式中y,z—表示在u,w参数方向上曲面片的 个数。 Uk=[。‘一‘,uk一2,…,u,1〕, 钱二仁砂一’,砂一2,…,w,1〕, 凡,二氏,i任[y一1,y+k一2〕, ,任仁z一1,z+z一2] 凡是某一个B样条面片的控制点编号。最常用的 是二、三次均匀B样条曲面的构造。 (1)均匀双二次B样条曲面 已知曲面的控制点巧(i,]=o,1,2),参数u、 二,且O镇u,w簇1,k=l=2,构造步骤是: ①沿w(或u)向构造均匀二次B样条曲线,即 有 ,「‘一“P0(w,一L矿“」[一::侃同哪 WMs经转置后尸。(w)=「尸oo尸。,尸。2〕磷wT;同上可得P,(二)=[尸,。尸,,尸,2」M五WT pZ(二)=[pZ。p21 p22]M百wT ②再沿u(或w)向构造均匀二次B样条曲线,即可得到均匀双二次B样条曲面。 ,L 11﹁.!一|到泊恤、、/)pp(w嘿的嘿编s(u,w)二UM日(w T W TB M翻川州护P PP=UM白 匕PZo P21简记为s(u,二)二〔侧砂呵百wl (2)均匀双三次B样条曲面 已知曲面的控制点八(£,j=o,1,2,3),参数u,二且“,w任【0,1],构造双三次B样条曲面的步骤同上述,其矩阵形式是 S(u,w)=L时正声吸至百wT, 门几创川川旧洲翻叼--302 1222犯尸尸尸P尸尸尸尸尸冲尸峥 一一 P月J月j 3一6,l八、︶n”4.内J,1卜|匡IL 1一6 一一 姚双三次B样条曲面如图1所示。图1双三次B样条曲面
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条