1) Hamilton vector field
Hamilton向量场
1.
A class of perturbed cubic Z2-equivariant Hamilton vector field is discussed in this paper.
考虑一类扰动的平面三次Z2-等变Hamilton向量场,借助数值分析工具,利用平面动力系统分支理论和判定函数方法证明该向量场至少存在11个极限环,且给出这些极限环的相对位置分布。
2.
In this paper,Some properties of product poisson manifold are discussed,some formulas of Hamilton vector field are also obtained;Morover,the Concept of Poisson Group is introduced in this paper and is applied in poisson manifol
本文讨论了Poisson积流形的一些性质,得出了Hamilton向量场的若干公式;文中还引入Poisson群的概念,并给出了它在Poisson流形中的应用。
2) planar Hamiltonian vector field
Hamilton平面向量场
3) Hamilton vector fields
Hamilton矢量场
4) Hamilton field
Hamilton场
5) Hamiltonian
[英][,hæmil'təuniən] [美][,hæmḷ'tonɪən]
Hamilton量
1.
Comparison of Hamiltonian at Critical Points of a System;
一个微分系统的奇点的Hamilton量比较方法
2.
To simplify the calculations, the Hamiltonian matrix was divided into five invariant subspaces based on the projection of the total spins along the external magnetic field.
从2个量子位系统的Hamilton量出发,根据总自旋在外磁场方向的总投影分成5个不变子空间,构造它们的块对角矩阵形式。
6) hamiltonian digraphs
Hamilton有向图
1.
In this paper,it is proved that for a digraph D of order n≥7,if d(x)+d(y)≥(5n)/2-5 for every pair of non-adjacent vertices x,y with a common out-neighbor or a common in-neighbor,then D is hamiltonian and for 3≤n≤6,there are non-hamiltonian digraphs satisfying that d(x)+d(y)≥(5n)/2-5 for every pai.
猜想:如果D中每一对不相邻且有公共外邻或公共内邻的顶点x,y都有d(x)+d(y)≥2n-1,那么D是Hamilton有向图。
补充资料:向量场
向量场(矢量场)是物理学中场的一种。假如一个空间中的每一点的属性都可以以一个向量来代表的话,那么这个场就是一个向量场。
最常用的向量场有风场、引力场、电磁场、水流场等等。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条