1) quasi-periodic motion
准周期运动
1.
The conditions in which a quasi-periodic motion occurs were deduced.
利用该系统具有的对称性,设计非线性状态反馈控制律,得到周期解失稳时产生准周期运动的条件,推导出控制增益与分叉参数之间的解析关系式,给出参数控制曲线,从而间接地实现了对系统混沌运动的延迟抑制。
2) periodic motion
周期运动
1.
Bifurcation of periodic motion on frequency in nonlinear vibration mechanism with piece-wise linearity;
分段线性-非线性振动机械周期运动关于ω的分叉
2.
he paper is concerned with the stability of the springless vibrohammer periodic motion with one shock per period.
本文讨论了无弹簧式振动锤锤体在每个运动周期内冲击一次的简单周期运动。
3.
Bifurcation and chaos of periodic motions of a single-degree-of-freedom system with piecewise-linearity is studied.
研究了一类单自由度分段线性系统周期运动的分岔和混沌现象。
3) period motion
周期运动
1.
Then the Poincaré map of its period motion is established by utilizing the stability theory of system with periodic coefficients.
研究了一类周期系数力学系统因周期运动失稳而产生Hopf-Flip分岔的问题。
2.
To investigate the dynamic stability of a two-degree-of-freedom manipulator as a system,differential equations of motion for this system were established on the basis of the Lagrange equation,and perturbed differential equations with period coefficients were derived for the period motion of this system by applying the perturbance theory.
为了研究两自由度机械手系统的动力学稳定性,基于拉格朗日方程给出了它的运动微分方程,并用扰动理论确定系统周期运动具有周期系数的扰动微分方程;根据F loquet理论对该系统扰动微分方程的平衡点的稳定性进行了分析,并用数值方法研究了平衡点失稳后的倍周期分岔过程。
3.
The Poincar map of the period motion is established following the Floquet theory .
研究了一类周期系数力学系统因周期运动失稳而产生Hopf分岔及混沌问题。
4) periodic motions
周期运动
1.
Stationary motions of the system were determined and periodic motions near them are conustructed using the Liapounov theorem of the holomorphic integral.
确认系统运动是稳定的,并通过Liapunov全纯积分定理,构建其近似的周期运动。
2.
We obtain some theorem on stability, boundedness,existence of periodic motions and stationary oscillation by means of the method of Lyapunov function.
通过Lyapunov泛函方法,获得了一类多滞量动力系统的运动稳定性、有界性、周期运动存在性的几个定理。
3.
We obtain some theorems on stability, boundedness, existence of periodic motions and stationary oscillation by means of the method of Lyapunov functional.
本文通过李雅普诺夫泛函方法获得了一类带有时滞的动力系统的运动稳定性、有界性、周期运动存在性和平稳振荡存在性的几个定理,并给出了时滞范围的简明表达式。
6) Quasi-periodic wave
准周期波动
补充资料:准周期性晶体
分子式:
CAS号:
性质:平均结构具三维平均周期,但实际不具有严谨三维周期性的晶体。此中主要有无公度与调幅这两种因素对晶体平均周期进行微扰,无公度结构指晶体中存在二套或二套以上的亚(点阵)结构,亚结构周期虽相近,但有微小差异,调幅结构指晶体周期受调幅的作用在乎均周期附近作微小的大小大小…周而复始的变化的一类结构,无公度与调幅结构的衍射图中,在反映平均结构的主衍射点之外还会呈现卫星衍射点。γ-Na2CO3即是一种具无公度调幅结构的准周期性晶体。
CAS号:
性质:平均结构具三维平均周期,但实际不具有严谨三维周期性的晶体。此中主要有无公度与调幅这两种因素对晶体平均周期进行微扰,无公度结构指晶体中存在二套或二套以上的亚(点阵)结构,亚结构周期虽相近,但有微小差异,调幅结构指晶体周期受调幅的作用在乎均周期附近作微小的大小大小…周而复始的变化的一类结构,无公度与调幅结构的衍射图中,在反映平均结构的主衍射点之外还会呈现卫星衍射点。γ-Na2CO3即是一种具无公度调幅结构的准周期性晶体。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条