1) locally finite submodule
局部有限子模
2) locally finite module
局部有限模
3) locally finite subalgebra
局部有限子代数
1.
Let U be quantum group Uq(f(K)), F(U) the locally finite subalgebra of U (i.
用U表示量子群Uq(f(K)),F(U)是U的局部有限子代数(即由量子伴随作用下局部有限的所有元素组成的U的子代数)。
2.
In this paper,by using the representation theory and structure of the locally finite subalgebra F(U) of the quantum group U = U_q(f(K)),we prove that every non-zero U-stable ideal of F(U) can both be generated by a sum of some highest weight vectors with distinct weights.
利用量子群U=U_q(f(K))的表示理论及其局部有限子代数F(U)的子模结构,证明了U_q(f(K))的局部有限子代数F(U)的任一非零理想均可由若干个具有不同权的最高权向量的和生成。
4) cofinitely semilocal modules
上有限半局部模
1.
As proper generalizations of generalized(weakly) supplemented modules,concepts of cofinitely generalized(weakly) supplemented modules and cofinitely semilocal modules were introduced,and the related properties of cofinitely generalized(weakly) supplemented modules were given.
作为广义补(弱补)模的真推广,引入上有限广义补(弱补)模,上有限半局部模的概念,并给出上有限广义补(弱补)模的相关性质。
5) locally finite
局部有限
1.
The notion of base-countably paracompact space is introduced and some of its equivalent characterizations are obtained:(i)X is a base-countably paracompact space if there exsists an open basis B for X with |B|=ω(X) such that every countably open cover U={Ui}i∈N of X has a locally finite countabe refinement B′ by members of B,B′={Bi}i∈N and BiUi.
引入了基-可数仿紧空间的概念,给出基-可数仿紧空间的一些等价刻画,获得以下结果:(i)X是基-可数仿紧空间当且仅当存在X的一开基B,|B|=ω(X),对于X的每一可数开覆盖U={Ui}i∈N,都存在B′B,使得B′={Bi}i∈N是U的局部有限的可数开加细,且BiUi;(ii)设X是正规空间,X是基-可数仿紧空间当且仅当存在的一开基B,|B|=ω(X),使得X的每一可数开覆盖都存在由B中的元构成的局部有限的收缩。
2.
Author mainly proves following:(1)X is a Base-paracompact space iff X is a Base-countably paracompact space and every open cover of X has a σ-locally finite open refinement by members of the basis which witnesses Base-countably paracompact space.
主要证明了如下结果:(1)X是基-仿紧空间当且仅当X是基-可数仿紧空间,并且X的每一开覆盖都存在满足X是基-可数仿紧空间的开基的元构成的σ-局部有限的开加细。
3.
In [4], the authors have proved that if a locally finite group is a core-finite, then it .
文[4]证明了局部有限的Core-有限群是abelian-by-finite。
6) sigma locally finite family of subsets
子集的局部有限族
补充资料:局部有限群
局部有限群
locally finite group
局部有限群【】叨uy五‘teg心甲;.Ka月研。幼邢,翻rPynna] 每一有限生成子群皆有限的群.任意局部有限群是一个扭群(见周期群(详石浏c脚uP)),但反之未必成立(见R川亩山问题(Burnside prob七m)).一个局部有限群被另一局部有限群的扩张仍是局部有限群.满足子群(甚至是Abel子群)的极小条件的每个局部有限群均包含一个指数有限的Abel子群(【3」)(见具有有限性条件的群(gro叩俪tha血址n郎co画-tion)).一个其Abel子群具有有限秩(见群的秩(扭瓜of ag心tlP))的局部有限群本身亦具有有限秩,且包含一个有限指数的局部可解子群(见局部可解群(1.llysol姐ble grouP)).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条