1) Hamilton principle
Hamilton原理
1.
Effect of Hamilton principle on particle movement;
Hamilton原理对粒子运动的影响
2.
Based on the Hamilton principle,the synchronization/stability characteristic analysis for multi-machine vibration system is theoretically put forward.
基于Hamilton原理,提出了一种多机振动系统同步稳定性理论条件。
3.
Dynamic equations for helical girder were derived by Hamilton principle.
运用Hamilton原理推导空间螺旋曲线梁结构的运动方程。
3) Hamilton variational principle
Hamilton变分原理
1.
Following Timoshenko theory of beams and the Hamilton variational principle,a mathematical model of dynamic behavior analysis of nonlinear elastic piles was established,in which three displacements and two angles were contained.
假定桩基材料服从一种3次非线性本构关系,同时桩被置于弹性基础上,基于Timoshenko梁的修正理论和广义Hamilton变分原理,建立了非线性弹性桩基动力学行为分析的数学模型,该模型包括了3个位移和2个转动。
2.
Following the modified theory of beams with the effect of shear deformation,a generalized Hamilton variational principle with three displacements and two rotational angles is established in which the material of pile obeys one of the thrice nonlinear constitutive relations.
基于计及横向剪切效应的梁的修正理论,建立材料服从一种3次非线性本构关系的桩基力学行为分析的广义Hamilton变分原理,并给出相应的数学模型,其中包括3个位移和2个转动。
4) Hamiltonian principle
Hamilton变分原理
1.
Using the Hamiltonian principle and the Galerkin s method, the motion equations of the system were derived.
将叶片模拟为固定在轮盘上的悬臂梁模型,采用Hamilton变分原理和Galerkin方法,导出了系统的运动方程表达式。
2.
By using the Hamiltonian principle and the Galerkin s method, the equations of motion of the bladed disk assemblies are derived.
将叶片模拟为固定在轮盘上的悬臂梁结构,采用Hamilton变分原理和Galerkin方法,导出了结构系统的运动方程表达式。
5) generalized Hamilton principle
广义Hamilton原理
6) Hamilton-type quasi-variational principle
Hamilton型拟变分原理
1.
One-field Hamilton-type quasi-variational principle in linear damping elastodynamics of the rigid and elastic supported beam is established which can fully characterize the initial-boundary-value problem of this dynamics.
首先建立了能反映动力学初值—边值问题的全部特征的有阻尼刚性与弹性支承梁动力学的一类变量广义Hamilton型拟变分原理,然后提出拉格朗日力学体系下的空间有限元—时间子域法,该法对空间域采用有限元来离散,而时间子域采用5次Hermite插值多项式插值。
补充资料:Hamilton-Остроградский原理
Hamilton-Остроградский原理
amilton-Ostrogradski principle
H画回权旧一oeTporpa皿e二,‘原理【H面闷奴旧一0由雌”山拓倾面啤:raM。月。ooa一众Tporpa皿e劝ro np。。明.。],稳夸诊用厚粤(p山Iclple ofsta加哪action) 由W.H田mdton(【11)为具有理想定常约束的完整体系建立的,并由M.B.O口加1禅那。由(121)推广至非定常几何约束的通用的积分的经典力学的变分原理(~tional principle of cla弱阎n篮£ha币比).根据这一原理,在受位势力作用下的系统的真实运动中, t、‘1 、一J(:一。)、:一J:‘, 里。里。与临近的运动学可能的运动相比较具有一定态值,对于相比较的运动系统的初始和终结位置和运动时间与真实运动的相同.这里T是动能,U是势能,L=T一U是系统的I刁脚刊买函数.在某些情况下,真实运动不仅对应泛函S的驻点,且对应其最小值.因此,Hamjlton一Oe】和印御军川行原理有时称为最小作用原理(pnnclpleof七滔t aCtjon).在非位势作用力F,情况下,作用的定态条件咨S二0,换为条件 r. 万t‘T+军“二“:’“!一0·【补注】在英文文献中,此原理的名称为Har闭ton厚理(H田旧ilton pri丽ple).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条