说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 流体力学的Hamilton变分原理
1)  Hamiltonian variational principle in fluid mechanics
流体力学的Hamilton变分原理
2)  generalized variational principle for fluid mechanics
流体力学广义变分原理
3)  Hamilton variational principle
Hamilton变分原理
1.
Following Timoshenko theory of beams and the Hamilton variational principle,a mathematical model of dynamic behavior analysis of nonlinear elastic piles was established,in which three displacements and two angles were contained.
假定桩基材料服从一种3次非线性本构关系,同时桩被置于弹性基础上,基于Timoshenko梁的修正理论和广义Hamilton变分原理,建立了非线性弹性桩基动力学行为分析的数学模型,该模型包括了3个位移和2个转动。
2.
Following the modified theory of beams with the effect of shear deformation,a generalized Hamilton variational principle with three displacements and two rotational angles is established in which the material of pile obeys one of the thrice nonlinear constitutive relations.
基于计及横向剪切效应的梁的修正理论,建立材料服从一种3次非线性本构关系的桩基力学行为分析的广义Hamilton变分原理,并给出相应的数学模型,其中包括3个位移和2个转动。
4)  Hamiltonian principle
Hamilton变分原理
1.
Using the Hamiltonian principle and the Galerkin s method, the motion equations of the system were derived.
将叶片模拟为固定在轮盘上的悬臂梁模型,采用Hamilton变分原理和Galerkin方法,导出了系统的运动方程表达式。
2.
By using the Hamiltonian principle and the Galerkin s method, the equations of motion of the bladed disk assemblies are derived.
将叶片模拟为固定在轮盘上的悬臂梁结构,采用Hamilton变分原理和Galerkin方法,导出了结构系统的运动方程表达式。
5)  variational principle in fluid mechanics
体力学变分原理
6)  mechanical variation principle
力学的变分原理
补充资料:弹性力学广义变分原理
      弹性力学最小势能原理和弹性力学最小余能原理的推广,其特点是,变分式中各量都可有独立的变分,并且事前不受任何限制。在弹性力学空间问题中,最一般的广义变分原理可叙述为:弹性力学空间问题的解必须满足弹性体的广义势能变分为零的条件,该条件又称为驻值条件,即
  
  
  
  
  
   δ∏3=0,
  
  
  
  (1)式中∏3为弹性体的三类变量广义势能,其表达式为:
  
  
   式中u(εij)为应变能密度;εij为应变分量;fi为体积力分量;ui为位移分量;σij为应力分量;pi为面力分量;Ω为弹性体所占的空间;B1为位移边界面;B2为受力边界面;ūi和圴i为边界上给定的位移分量和面力分量;dB为面积微元;式中重复下标表示约定求和。在变分式(1)中,ui、εij、σij等15个函数都可有独立的变分,并且事前没有任何附加条件(表面力pi看作是从属于应力σij的量)。从条件(1)可推出弹性力学的全部基本方程,包括应变-位移关系、应力-应变关系、平衡方程和边界条件。上述变分原理的独立变量有位移、应变、应力三类,因此称为三类变量广义变分原理。它是中国力学家胡海昌于1954年首先提出的,日本的鹫津久一郎于1955年也独立地得到这一原理,所以又称胡-鹫津原理。
  
  弹性力学广义变分原理有一种稍弱的形式,即二类变量广义变分原理,又称为赫林格-瑞斯纳原理。它由E.赫林格于1914年和E.瑞斯纳于1950年分别独立提出,其数学表达式为:
  
  
  
  
  
    δ∏2=0,
  
  
   (3)式中
  
  
    式中uij)为余能密度。∏2中的独立自变函数有ui和σij两类共九个。将应变-位移关系代入式(2),消去εij,就可以得到式(4)。 因此二类变量广义变分原理是三类变量广义变分原理的一个特殊情况。
  
  在有限元法和工程弹性理论中,广义变分原理有广泛的应用。例如,在板壳弯曲的有限元计算中,用它处理变形的不协调性,可得到较好的结果。对于解决几何非线性问题,胡-鹫津原理是一个有力的工具。在工程弹性理论中,广义变分原理可用于推导各种近似理论;在弹性振动和稳定理论中,可用于求固有频率和临界载荷,并能获得较好的结果。
  
  

参考书目
   胡海昌著:《弹性力学的变分原理及其应用》,科学出版社,北京,1981。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条