1) implication operator
蕴涵算子
1.
United forms of triple I method based on a sort of implication operators;
基于一类蕴涵算子的三I算法的统一形式
2.
Triple I methods based on parametric-implication operators;
基于含参量蕴涵算子的三I算法
3.
Research on implementation algorithm of fuzzy concept lattices based on different implication operator;
基于不同蕴涵算子的模糊概念格建格算法研究
2) implication
[英][,ɪmplɪ'keɪʃn] [美]['ɪmplɪ'keʃən]
蕴涵算子
1.
We further study the inducing operators of a quasi-t-norm (or an implication) on a complete lattice once discussed in Reference [2],and prove that implication and the t-inducing operator of quasi-t-norm equals the original quasi-t-norm under a given condition and a given scope.
利用文献[2]中讨论完备格上蕴涵算子和拟t-模的诱导算子的思想方法,证明了蕴涵算子和拟t-模的2次T-诱导在一定条件下、一定范围内等于原拟t-模(或蕴涵算子),得到了两个不同诱导算子之间的关系及它们与L-关系方程解的联系。
2.
This paper discusses the sets of solutions of equations T(a,x)=b and I(a,x)=b, where L is a complete Brouwerian lattice, T is an infinitely V -distributive pseudo-t-norm on L, I is an infinitely A-distributive implication on L, and J=7(T).
讨论方程T(a,x)=b,I(a,x)=b的解集,其中L为完备Brouwer格,T为无穷V-分配伪t-模,I是无穷∧-分配蕴涵算子,且I=I(T)。
3) implication operator Lp
蕴涵算子Lp
1.
The theory of sustaining degree of reverse triple I method and α-reverse triple I sustaining method for fuzzy reasoning based on implication operator Lp are studied.
研究了基于蕴涵算子Lp模糊推理的FMP反向三I支持算法及α-反向三I支持算法,给出了FMP模型的反向三I算法及α-反向三I算法的计算公式。
4) L~* implication operator
L~*蕴涵算子
5) Lukasiewicsz implication operator
Luk蕴涵算子
6) family of implication operator
蕴涵算子族
1.
The new family T(q,p)-LGN of left-continuous t-norms and its residua family R(q,p)-LGN of implication operators,which include Lukasiewicz implication operator,Godel implication operator and R0 implication operator,are presented,and the method of fuzzy reasoning based on family of implication operators is proposed,and FMP model Triple Ⅰ sustaining method based on R(q,p)-LGN is given.
给出了一族新的左连续三角模族T(q,p)-LGN族及其伴随蕴涵算子族R(q,p)-LGN,它包括Lukasiewicz蕴涵算子、Gdel蕴涵算子及R0蕴涵算子;提出了基于蕴涵算子族的模糊推理的思想,并给出了基于蕴涵算子族R(q,p)-LGN的FMP模型的三Ⅰ支持算法。
补充资料:凹算子与凸算子
凹算子与凸算子
concave and convex operators
凹算子与凸算子「阴~皿d阴vex.耳阳.勿韶;.留叮.肠疽“‘.小啊j阅雌口叹甲司 半序空间中的非线性算子,类似于一个实变量的凹函数与凸函数. 一个Banach空间中的在某个锥K上是正的非线性算子A,称为凹的(concave)(更确切地,在K上u。凹的),如果 l)对任何的非零元x任K,下面的不等式成立: a(x)u。(Ax续斑x)u。,这里u。是K的某个固定的非零元,以x)与口(x)是正的纯量函数; 2)对每个使得 at(x)u。续x《月1(x)u。,al,月l>0,成立的x‘K,下面的关系成立二 A(tx))(l+,(x,t))tA(x),0
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条