1) AHP-FUZZY assessment method
层次分析-模糊评判法
3) AHP (analytic hierarchy process)and fuzzy self-judge-ment
层次分析法和模糊自评判
4) layer analysis synthesis unclear judging method
层次分析综合模糊评判法
1.
According to the characteristic of sustainable development evaluation in highway constructing item target,it firstly puts forward using improved multi-layer analyzing method,multi-layer analysis synthesis unclear judging method to evaluate the condition of target sustainable development,and gives particular calculating steps.
根据高速公路建设项目目标可持续性发展评价的特点,首次提出用改进的多层次分析法——多层次分析综合模糊评判法定量地对目标可持续性发展的情况进行评价,并给出了详细的计算步骤。
5) Multi-level Analysis Syn-thetic Fuzzy Evaluation Model
多层次分析综合模糊评判
6) Fuzzy analytic hierarchy process
模糊层次分析法
1.
Region water security evaluation method based on information entropy and improved fuzzy analytic hierarchy process;
信息熵与改进模糊层次分析法耦合的区域水安全评价模型
2.
Application of fuzzy analytic hierarchy process in decision-making of investment;
模糊层次分析法在投资决策中的应用
3.
Human resource risk factors assessment based on the fuzzy analytic hierarchy process;
基于模糊层次分析法的企业人力资源风险因素评价
补充资料:模糊综合评判
综合考虑事物多种因素,用模糊集理论来评定其优劣的方法。模糊综合评判广泛用于评定产品质量、环境质量、农业布局、天气预报、医疗诊断等方面。
设给定两个有限论域:U={u1,u2,...,un},V={v1,v2,..., vm}。这里 U是综合评判的因素所组成的集合,V代表评语所组成的集合。模糊综合评判是一个模糊变换问题:
X⋅R=Y式中"⋅ "表示合成运算,X是U上的模糊子集,评判结果 Y是V上的模糊子集,模糊关系R可看作一个模糊变换器(见图)。
若已知Y和R,求X;或已知X和Y,求R;就构成模糊综合评判的逆问题,需要求解模糊关系方程。模糊关系方程是法国学者E.桑杰斯于1976年根据医疗诊断的需要提出来的。这类问题相当于已知评判结果和模糊关系,求评判者对各种因素的权数分配问题。这种问题具有重大的实际意义,对发展专家系统起指导作用。
现举评判电视机的实例来说明模糊综合评判的方法。U={u1,u2,u3},V={v1,v2,v3,v4}。这里u1代表图像,u2代表音响,u3代表价格;v1表示很好,v2表示较好,v3表示可以,v4表示不好。设聘请专家或顾客进行评判。例如对于图像,有50%的人认为很好,40%的人认为较好,10%的人认为可以,没有人认为不好。全部结果记作:
对于图像:Vu1=(0.5,0.4,0.1,0)
对于音响:Vu2=(0.4,0.3,0.2,0.1)
对于价格:Vu3=(0,0.1,0.3,0.6)
这样就构成一个模糊矩阵:
设一类顾客在购买电视机时主要是要求图像清晰,价格便宜,音响稍差则不要紧,则此类顾客对电视机三个因素的权数分配
X =[0.5 0.2 0.3]对电视机的评判结果为这是根据最大最小运算得到的,还需作归一化处理。因为0.5+0.4+0.3+0.3=1.5,用1.5除各项得到 [0.330.27 0.20 0.20]。模糊综合评判的结果,认为图像、音响、价格都很好的占比重最大,达33%。
设给定两个有限论域:U={u1,u2,...,un},V={v1,v2,..., vm}。这里 U是综合评判的因素所组成的集合,V代表评语所组成的集合。模糊综合评判是一个模糊变换问题:
X⋅R=Y式中"⋅ "表示合成运算,X是U上的模糊子集,评判结果 Y是V上的模糊子集,模糊关系R可看作一个模糊变换器(见图)。
若已知Y和R,求X;或已知X和Y,求R;就构成模糊综合评判的逆问题,需要求解模糊关系方程。模糊关系方程是法国学者E.桑杰斯于1976年根据医疗诊断的需要提出来的。这类问题相当于已知评判结果和模糊关系,求评判者对各种因素的权数分配问题。这种问题具有重大的实际意义,对发展专家系统起指导作用。
现举评判电视机的实例来说明模糊综合评判的方法。U={u1,u2,u3},V={v1,v2,v3,v4}。这里u1代表图像,u2代表音响,u3代表价格;v1表示很好,v2表示较好,v3表示可以,v4表示不好。设聘请专家或顾客进行评判。例如对于图像,有50%的人认为很好,40%的人认为较好,10%的人认为可以,没有人认为不好。全部结果记作:
对于图像:Vu1=(0.5,0.4,0.1,0)
对于音响:Vu2=(0.4,0.3,0.2,0.1)
对于价格:Vu3=(0,0.1,0.3,0.6)
这样就构成一个模糊矩阵:
设一类顾客在购买电视机时主要是要求图像清晰,价格便宜,音响稍差则不要紧,则此类顾客对电视机三个因素的权数分配
X =[0.5 0.2 0.3]对电视机的评判结果为这是根据最大最小运算得到的,还需作归一化处理。因为0.5+0.4+0.3+0.3=1.5,用1.5除各项得到 [0.330.27 0.20 0.20]。模糊综合评判的结果,认为图像、音响、价格都很好的占比重最大,达33%。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条