1) fuzzy synthetic evaluation
多层次模糊综合评判法
1.
A fuzzy synthetic evaluation method for the multilevel system is introduced.
本文利用优序图法确定各因素的权重,采用多层次模糊综合评判法对数字图书馆进行评价,评价实例验证了该方法的有效性。
2) multi-layer fuzzy comprehensive discrimination
多层次模糊综合评判
1.
On the basis of it,a multi-layer fuzzy comprehensive discrimination model is proposed and an empirical analysis on Yangzhou city is made.
在充分理解水资源承载能力概念,深入分析其影响因素的基础上,根据指标体系筛选原则,设计出多层次的适合南方湿润地区水资源承载能力评价的指标体系,建立了多层次模糊综合评判模型,并以扬州市水资源为例进行了实证分析。
4) multi-level fuzzy discriminating analysis
多层次模糊综合判别法
5) multilevel fuzzy comprehensive evaluation method
多层次模糊综合评价法
1.
Application of ANP-based multilevel fuzzy comprehensive evaluation methods to post-evaluation for grid construction projects
基于ANP的多层次模糊综合评价法的电网建设项目后评价研究
6) multilevels multitargets multigrades fuzzy composite evaluation
多层次多目标多级模糊综合评判
补充资料:模糊综合评判
综合考虑事物多种因素,用模糊集理论来评定其优劣的方法。模糊综合评判广泛用于评定产品质量、环境质量、农业布局、天气预报、医疗诊断等方面。
设给定两个有限论域:U={u1,u2,...,un},V={v1,v2,..., vm}。这里 U是综合评判的因素所组成的集合,V代表评语所组成的集合。模糊综合评判是一个模糊变换问题:
X⋅R=Y式中"⋅ "表示合成运算,X是U上的模糊子集,评判结果 Y是V上的模糊子集,模糊关系R可看作一个模糊变换器(见图)。
若已知Y和R,求X;或已知X和Y,求R;就构成模糊综合评判的逆问题,需要求解模糊关系方程。模糊关系方程是法国学者E.桑杰斯于1976年根据医疗诊断的需要提出来的。这类问题相当于已知评判结果和模糊关系,求评判者对各种因素的权数分配问题。这种问题具有重大的实际意义,对发展专家系统起指导作用。
现举评判电视机的实例来说明模糊综合评判的方法。U={u1,u2,u3},V={v1,v2,v3,v4}。这里u1代表图像,u2代表音响,u3代表价格;v1表示很好,v2表示较好,v3表示可以,v4表示不好。设聘请专家或顾客进行评判。例如对于图像,有50%的人认为很好,40%的人认为较好,10%的人认为可以,没有人认为不好。全部结果记作:
对于图像:Vu1=(0.5,0.4,0.1,0)
对于音响:Vu2=(0.4,0.3,0.2,0.1)
对于价格:Vu3=(0,0.1,0.3,0.6)
这样就构成一个模糊矩阵:
设一类顾客在购买电视机时主要是要求图像清晰,价格便宜,音响稍差则不要紧,则此类顾客对电视机三个因素的权数分配
X =[0.5 0.2 0.3]对电视机的评判结果为这是根据最大最小运算得到的,还需作归一化处理。因为0.5+0.4+0.3+0.3=1.5,用1.5除各项得到 [0.330.27 0.20 0.20]。模糊综合评判的结果,认为图像、音响、价格都很好的占比重最大,达33%。
设给定两个有限论域:U={u1,u2,...,un},V={v1,v2,..., vm}。这里 U是综合评判的因素所组成的集合,V代表评语所组成的集合。模糊综合评判是一个模糊变换问题:
X⋅R=Y式中"⋅ "表示合成运算,X是U上的模糊子集,评判结果 Y是V上的模糊子集,模糊关系R可看作一个模糊变换器(见图)。
若已知Y和R,求X;或已知X和Y,求R;就构成模糊综合评判的逆问题,需要求解模糊关系方程。模糊关系方程是法国学者E.桑杰斯于1976年根据医疗诊断的需要提出来的。这类问题相当于已知评判结果和模糊关系,求评判者对各种因素的权数分配问题。这种问题具有重大的实际意义,对发展专家系统起指导作用。
现举评判电视机的实例来说明模糊综合评判的方法。U={u1,u2,u3},V={v1,v2,v3,v4}。这里u1代表图像,u2代表音响,u3代表价格;v1表示很好,v2表示较好,v3表示可以,v4表示不好。设聘请专家或顾客进行评判。例如对于图像,有50%的人认为很好,40%的人认为较好,10%的人认为可以,没有人认为不好。全部结果记作:
对于图像:Vu1=(0.5,0.4,0.1,0)
对于音响:Vu2=(0.4,0.3,0.2,0.1)
对于价格:Vu3=(0,0.1,0.3,0.6)
这样就构成一个模糊矩阵:
设一类顾客在购买电视机时主要是要求图像清晰,价格便宜,音响稍差则不要紧,则此类顾客对电视机三个因素的权数分配
X =[0.5 0.2 0.3]对电视机的评判结果为这是根据最大最小运算得到的,还需作归一化处理。因为0.5+0.4+0.3+0.3=1.5,用1.5除各项得到 [0.330.27 0.20 0.20]。模糊综合评判的结果,认为图像、音响、价格都很好的占比重最大,达33%。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条