1) sequence
[英]['si:kwəns] [美]['sikwəns]
数列
1.
The General Expression of the sequence Defined by U_( n+1) =a+b/U_ n and Its Application;
一类数列的通项公式及其应用
2.
Study of the Methods in Solving General Terms Through the Sequence Given by Recursion Relations;
以递推关系式给出的数列求通项问题的研究
3.
Super and Inferior Limits of the Sequences;
数列的上极限与下极限探析
2) sequence of number
数列
1.
The L Hospitcl rule in sequence of number;
数列中的"洛必达法则"
2.
Sometimes,the problem of sequence of number summation is a little troublesome,even there is no way to deal with it.
数列求和问题有时比较麻烦,甚至无从下手。
3.
The essay puts forward a few methods to figure the limit of sequence of number by giving examples.
研究了数列极限的几种特殊求解方法。
3) sequences
[英]['si:kwəns] [美]['sikwəns]
数列
1.
Some interesting sequences and their combinatorial identities;
一些有趣数列及其组合恒等式
2.
This article discusses the contents and the relations and conversion of series, sequences and integrals.
本文就数列、级数、积分等内容,讨论了它们之间的联系及转化。
4) series
[英]['sɪəri:z] [美]['sɪriz]
数列
1.
On the Nature of Fibonacci Series;
关于斐波那契数列的性质探讨
2.
Several Substitution Method in the Series Calculation;
数列问题中的几类代换法
3.
This paper discusses one new kind of algebraic operation on series and its character.
本文讨论源于参数切换机械系统的数列代数运算及其性质。
5) number sequence
数列
1.
The proof on the boundedness,monotonicity and limit of number sequence{n/(n!)~(1/n)}
数列{n/(n!)~(1/n)}的单调有界性及极限的证明
2.
In this paper,the weight of a subsequence for a number sequence is defined,then a theorem,that is,an arithmetic mean sequence for a sequence with finite partition corre spond to convergent subsequence convergence to a li near combination of subsequence limit and the coefficient are the weight of a subsequence,is given.
对一般数列的情况进行了讨论,给出了数列的子列权的概念,得出了关于数列的算术平均序列的一个定理,即存在有限划分的收敛子列的数列,其算数平均序列收敛于其子列极限的线性组合,而系数正是相应子列的权。
3.
The thesis firstly gives an introduction to Stolz theorem which in style and style,then popularizes it from the situation of number sequence to the situation of function.
极限论中求型和型的数列极限,应用Stolz定理非常有效,Stolz定理可说是求数列极限的洛必达(LHospital)法则。
6) sequence of numbers
数列
1.
Probe into the Problem of convergence for sequence of numbers {a_n};
数列{a_n}收敛问题的探索
2.
Prove one simple nature of convergence for sequence of numbers , Popularize this to convergence series.
证明了收敛数列的一个简单性质。
3.
It is equal in value of proved that it had necessary limit which sequence of numbers are monotonous and bounded or converge of Cauchy s norm.
单调有界数列必有极限是极限理论中一个很重要的结论 ,而柯西收敛准则则以另一种形式表达了这一结论。
补充资料:数列
数列 number,sequence of 按照一定次序排列着并且能依次与自然数1,2,……(或由1到n)对应的一列数。由有限个数排成称为有限数列;由无穷多个数排成的称为无穷数列。每个数列都可以看作是定义在自然数集N或其子集{1,2,…,n}上的函数。数列中每个位置上的数都称为项。第一个位置上的数称为首项,第二个称为第二项,依此类推。如果数列的第n项可以用一个含有n的解析式来表示,并且n能代表任意项数,那么这样的解析式称为数列的通项公式。例如,全体正偶数由小到大排成的数列2,4,6,…,第n项an可表为2n,an=2n(n=1,2,…)就是通项公式;正奇数数列1,3,5,…的通项公式是an=2n-1 。当一个数列的通项公式已被掌握时,这个数列的性质就可以用数学方法进行分析研究。如果数列{an}的各项满足an+1≥an (an+1>an),n=1,2,…,就称数列{an}为递增(严格递增)数列;如果满足an+1≤an(an+1<αn),n=1,2,…,就称为递减(严格递减)数列。如果数列{an}的各项对于某个正数M,满足|an|≤M,n=1,2,…,就称数列{an}为有界数列。 |
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条