1) Pasternak's elastic foundation
Pasternak双参数地基
2) Pasternak foundation
Pasternak地基
1.
Green quasifunction method for simply-supported thin plates on Pasternak foundation;
Pasternak地基上简支板问题的准格林函数方法
2.
The idea of Green quasifunction method was clarified in detail by considering vibration problem of simply-supported thin polygonic plates on Pasternak foundation.
以Pasternak地基上简支多边形薄板的振动问题为例,详细阐明了准格林函数方法的思想。
3.
A new method for bending problems of rectangular plates with free edges on Pasternak foundation: the Differential Quadrature Method,is presented.
给出了分析Pasternak地基上自由边矩形板弯曲问题的新方法——DQ法,运用DQ法研究Pasternak地基上自由边矩形板弯曲问题。
3) Pasternak Foundation Model
Pasternak地基模型
4) double-parameter foundation
双参数地基
1.
Based on the theory of double-parameter foundation,total potential energy fonctionelle of double-parameter foundation and pile system was obtained.
基于双参数地基理论,获得了双参数地基-桩系统的总势能泛函;采用能量变分原理推导了双参数地基推力长桩平衡微分方程及相应的边界条件;根据桩的抗弯刚度与地基参数相对大小的不同情况,求得了双参数地基推力长桩的水平位移解析解。
2.
The rigid modal of free beam on inhomogeneous Winkler foundation or double-parameter foundation relates to the interaction between beam and soil.
基于哈密顿原理和变化运算,获得了考虑周围土体支承影响的双参数地基梁振动特性,并分析了不均匀地基上自由梁的广义刚体模态频率及其随地基不均性的变化规律。
5) two-parameter foundation
双参数地基
1.
Dynamic response of rectangular plate on two-parameter foundation to moving load;
双参数地基矩形板在运动荷载下的动力响应分析
2.
Parameter analysis of continuously reinforced concrete pavement resting on two-parameter foundation;
以连续配筋混凝土路面(CRCP)近年来应用比较广泛的路面结构形式为研究对象,采用考虑地基压缩系数和水平剪切系数的双参数地基模型,建立了考虑地基土体滞回阻尼的黏弹性地基上CRCP的振动微分方程,运用三角级数和Fourier变换得到了简谐、矩形均布荷载作用下路面竖向位移的解答,并利用Fourier逆变换得到了数值结果,较为全面的分析了荷载速度、频率、路面配筋率、板厚以及地基参数对板的动力响应的影响。
6) two-parameter subgrade
双参数地基
1.
Element-free method for two-parameter subgrade plates;
双参数地基板的无单元法
2.
For computational reliability and strictness of the theory of the plate and the subgrade reaction,first, the attenuate factor of the displacement is corrected for the subgrade out the plate on two-parameter subgrade.
为了板与地基相互作用理论的严密性和计算的可靠性,该文先纠正了双参数地基自由矩形板研究中长期存在的板外地基沉降衰减指数取值不当的问题;然后基于弹性半空间地基上四边自由矩形板的弯曲解析解,数值计算验证了实际地基反力与挠度不具有Vlazov双参数地基模型所导出的关系式;最后,通过对算例的数值计算及结果的对比分析,从板的弯曲变形角度,说明该文给出的衰减指数值才是适当的;同时,也分析给出了Vlazov双参数地基自由矩形板各种近似边界条件的计算精度。
补充资料:2,2-双氯甲基-三亚甲基-双[双(2-氯乙基)磷酸脂]
CAS:38051-10-4
分子式:C13H24Cl6O8P2
中文名称:2,2-双氯甲基-三亚甲基-双[双(2-氯乙基)磷酸脂]
英文名称:2,2- bis(chloromethyl)-trimethylene bis[bis(2-chloroethyl)phosphate]
phosphoric acid, 2,2-bis(chloromethyl)-1,3-propanediyl tetrakis(2-chloroethyl)
2,2-bis(chloromethyl)trimethylene bis(bis(2-chloroethyl)phosphate)
2,2-bis(chloromethyl)-1,3-propanediyltetrakis(2-chloroethyl)phosphate
分子式:C13H24Cl6O8P2
中文名称:2,2-双氯甲基-三亚甲基-双[双(2-氯乙基)磷酸脂]
英文名称:2,2- bis(chloromethyl)-trimethylene bis[bis(2-chloroethyl)phosphate]
phosphoric acid, 2,2-bis(chloromethyl)-1,3-propanediyl tetrakis(2-chloroethyl)
2,2-bis(chloromethyl)trimethylene bis(bis(2-chloroethyl)phosphate)
2,2-bis(chloromethyl)-1,3-propanediyltetrakis(2-chloroethyl)phosphate
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条