1) weak reduced Grbner bases
弱既约Grbner基
1.
Nabeshima presents the definition and algorithm of weak reduced Grbner bases in rings of differential operators,but weak reduced Grbner base is not unique.
Nabeshima给出了微分算子环的弱既约Grbner基的定义和算法,但弱既约Grbner基并不唯一。
2) reduced Grbner-basis
既约Grbner基
3) strong reduced Grbner bases
强既约Grbner基
1.
Therefore,this paper presents the definition and algorithm of strong reduced Grbner bases in rings of differential operators and proves the exi.
为此,给出了微分算子环的强既约Grbner基的定义及算法,并证明微分算子环的强既约Grbner基的存在性和唯一性。
4) reduced Grobner-basis
约化Gr(?)bner基
5) Grbner bases
Grbner基
1.
The multivariate spline ideal Grbner bases on the simple partition;
简单剖分上的多元样条理想Grbner基
2.
Implementation,comparison and improvement of the methods of characteristic set,Grbner bases and well-behaved bases;
特征列、Grbner基和良性基方法的实施、比较和改进
3.
In order to improve the decoding efficiency of error-correct codes,a method based on Grbner bases for modules was presented for solving the key equation in decoding error-correct codes so as to find the error location and error patterns.
针对如何提高纠错码译码过程中的效率问题,讨论了利用模的Grbner基理论计算纠错码中错误位置和错误值。
6) Grbner basis
Grbner基
1.
Application of Grbner basis to the shortest route;
Grbner基理论在最短路径问题中的应用
2.
Lifting algorithms for Grbner basis computation of invariant ideals
不变理想的Grbner基提升算法(英文)
补充资料:既约
这里以代数曲线为例。
设c是代数曲线, c_1,c_2,...,c_n是c所有的不可约分支。
我们知道c总可以写成c=∑m_ic_i (m_i是正整数).
c称为既约,如果所有m_i=1.
从方程角度来看:c是由局部仿射方程 f(x,y)=0定义,此处 f(x,y)是多项式。
f(x,y)可以因式分解为:
f(x,y)=∏(p_i(x,y))^(m_i) ,此处m_i是正整数,p_i(x,y)是不可约多项式。
f(x,y)称为既约,如果所有的m_i=1.
p_i(x,y)=0定义了c的不可约分支c_i, 从而c=∑m_ic_i.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条