1) trimmed surface
裁剪曲面
1.
Algorithm of trimmed surface triangulation of prepositive disposal in predicting RCS of aircraft;
飞行器RCS计算前置处理中裁剪曲面剖分算法
2.
Here the tool surface is represented by the analytical surface,the trimmed surface is approximated with the triangular patches, and the problem of interfer-ence avoidance is solved by transforming them to the test of relations between tool surface andtriangular patches.
在分析国内外三坐标数控加工刀具轨迹干涉检查和消除算法的基础上,提出了一种适合于球头刀、平底刀和圆角刀的刀具轨迹干涉检查和消除的算法,该算法将刀具看成解析曲面,裁剪曲面由三角片逼近表示,将刀具轨迹干涉检查与消除的问题转化为刀具曲面与三角片的相关性测试。
3.
That is referred to how a model represented by many trimmed surfaces is transferred to a watertight model.
曲面缝合是曲面造型过程中常用到的处理技术,即把由多张裁剪曲面表示的模型转换成一个"不漏水"的模型。
2) trimmed surfaces
裁剪曲面
1.
An algorithm for triangulating multi trimmed surfaces is introduced in this paper.
提出一种新的多裁剪曲面三角划分的方法。
3) surface trimming
曲面裁剪
1.
Scan line algorithm for NURBS surface trimming;
用于非均匀有理B样条曲面裁剪的扫描线算法
2.
This paper discusses the algorithm and implementation of the advanced surface design functions in BSURF-GI (an interactive 3D surface modelling system), presents a method which can do surface trimming along with the suface / surface intersection curves and filleting surface boundaries, and also points out the system further research direction and the way of integration with solid modelling system.
提出了一种能沿曲面与曲面交线和过渡曲面边界线进行曲面裁剪的算法,指出了该系统今后进一步研究的方向及与实体造型系统集成的途径。
3.
In CAD/CAM engineering,surface trimming is one of the most important and complex problems and quadrangular meshes are widely employed.
曲面裁剪运算是CAD/CAM领域最重要、最复杂的问题之一,四边形网格在工程CAD/CAM的实际应用中较为广泛。
4) freeform surfaces
剪裁曲面
5) trimmed patch
裁剪曲面片
6) trimmed NURBS surfaces
NURBS裁剪曲面
补充资料:单侧曲面与双侧曲面
单侧曲面与双侧曲面
one - sided and two - sided surfaces
单侧曲面与双侧曲面(帐.幼山月.砚加。一浦山吐,叮肠。污;o月.oc”POHHNe.刀”yc功PollH“e no.epxltocT.) 以不同的方式放置于外围空间中的两类曲面(单侧放置(one一sid留泌ition)和双侧放置(t场U.si山刘p沈i石on)).例如,柱面是双侧曲面,而M施如带(M冬biuss州P)是单侧曲面.这两类曲面之间的特征区别是,柱面的边界由两条曲线组成,而M6bi留带的边界是单独的一条曲线.在封闭曲面中,球面(sPhere)和环面(torus)是双侧的,而X】曲1曲面(Kleins班鱼沈)是单侧的.作为双侧放置和单侧放置的例子,可以引用圆周在M6blus带中的嵌人.这样,圆周“(见图)是单侧曲线,而圆周刀是双侧曲线(一般说来,任何无定向道路(d留丽enii飞path)单侧地落在曲面中). 霍重)薰黔 更确切地说,单侧曲面和双侧曲面是以不同的方式嵌人在(维数高过1的)外围空间中的两类流形.双侧性和单侧性与可定向性和不可定向性(见定向(。山nta石on))有关,但是它们不是曲面的内在性质,而依赖于外围空间.例如,存在可定向的双侧曲面:梦C=夕,护C=R,;不可定向的双侧曲面:’R尸ZxOCR PZ xs,;可定向的单侧曲面:尹二S,xs,c= RPZx夕;不可定向的单侧曲面:R尸,CR尸(这里,梦是球面,产是环面,R尸“是射影平面,RP3是射影空间,夕是R尸上迷失方向的路径). 在可定向空间(例如,R”)中一个超曲面是可定向的,当且仅当它是双侧的. 假定一个法向量沿着浸人在某个空间中的光滑曲面上一条闭曲线移动,并保持它是曲面的法向量.如果不管如何选择闭曲线,当回到出发点时法向量的指向与它原来的指向总是一致的,则称该曲面是双侧的(t认。一sid记);反之,则称它为单侧的(o优一51山沮).更一般地,曲面n是双侧放置的当且仅当它的法丛(nonl以1 bundk)是平凡的(在这个丛里存在一个非零截面).反之,单侧曲面的法丛是非平凡的:在n上存在一条曲线使得法丛在它上面的限制是一条M6bius常. 空间N”中每一个(超)曲面M”一’在局部上都把尸分成两部分,即任意一点x任M月一’C=N“有一个邻域U cN,使得U由两个分支U’和U“组成,而U门M“一’属于它们的公共边界.在另一方面,M”一’在N”中的充分小邻域(如果M在N中是封闭的)或者是一个分支,或者有两个分支,其边界包含M在内.在第一种情形,(超)曲面M”一’也称为单侧的(one-51山沮),在第二种情形,称为双侧的(腼、51山过).因而,虽然曲面在局部上是双侧的,但是在大范围上它可能是单侧的.反过来,双侧曲面未必分隔它在空间中的邻域. 对于落在N“+’中的双侧曲面M”,任意一条封闭曲线:与M”在N”十’中的相交指数(同调论中的)(运如加叨。n in(七x(in holnofogy))满足方程(:,M”)二Olllod 2.但是,如果M”是单侧的,则对某条曲线:日丫+’(:,M·)笋0.这个事实(与法向量的移动及邻域的分隔一起)也能取作单侧性和双侧性的定义.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条