1) empirical Euclidean likelihood
经验欧氏似然
1.
The empirical Euclidean likelihood estimation of distribution function in the presence of auxiliary information;
具有附加信息分布函数的经验欧氏似然估计
2.
In this paper,empirical Euclidean likelihood ratio statistics are constructed for parametric components in a partial linear model under random design,and with its limit distribution asymptotic confidence region of partial linear model parameter is also constructed.
在随机设计下本文构造了部分线性模型的经验欧氏似然比统计量,并由它的极限分布构造了部分线形模型参数的渐进置信域。
3.
This paper discusses the properties about large samples of empirical likelihood for the differences of two samples parameter in this model,and also proves that the empirical Euclidean likelihood ratio statistic is asymptotically χ2.
将经验欧氏似然应用于半参数模型,讨论了在此模型下两样本参数差异的经验欧氏似然的大样本性质,证明了经验欧氏似然比统计量依分布收敛于2χ随机变量,由此给出参数差异的经验似然置信区间。
2) Empirical Eucliden likelihood
经验欧氏似然
1.
The properties about large samples of empirical Eucliden likelihood in strongly stationary m dependent semiparametric models are discussed in this paper.
讨论了强平稳m相依半参数模型的经验欧氏似然的大样本性质。
3) empirical likelihood
经验似然
1.
Empirical Likelihood Method and Its Application in Genes Expression Regulator Network;
经验似然方法及基因表达调控网络应用
2.
Semi-empirical likelihood inference for quantile differences of two populations based on fractional imputation
分数填补下两总体分位数差异的半经验似然推断
3.
Adjusted empirical likelihood in Cox proportional hazard model
Cox比例风险模型中的校正经验似然方法(英文)
4) Pseudo Empirical likelihood
伪经验似然
5) empirical likelihood ratio
经验似然比
1.
In this paper,we extend the conditionθ_0=EH(X,μ) to the equation of EH(X,θ_0,μ)=0 and,under the strongly stationary -mixing random sample,discuss empirical likelihood ratio confi- dence regions with a nuisance parameter.
本文将条件θ_0=EH(X,μ)推广到更一般的估计方程EH(X,θ_0,μ)=0,并且在样本为强平稳φ混合序列情形下讨论带有讨厌参数的经验似然比置信区域。
2.
This paper gives the confidence regions for θ0 by using an empirical likelihood ratio function.
在许多情况下,形如θ0=EH(X,μ)是人们所感兴趣的参数,这里H(·,·)是一已知在Rd×Rk上的连续实函数,其中,μ∈Rk是一讨厌参数,利用经验似然比泛函给出了θ0的经验似然比置信区间,属非参数方法,但其结果却类同于参数下的Wilks定理和Owen的工作,同时给出了一些有用实例。
3.
Cui hengjian([1]) have discussed empirical likelihood ratio confidence regions for a interesting parameter θ_0 with a nuisance parameter μ,supposing θ_0 = EH (X,μ),Xii.
崔恒建(文献[1])假设X 1 ,LXn为取自总体X 的iid 样本且θ0 = EH(X,μ),其中μ为讨厌参数,讨论了感兴趣参数θ0的经验似然比置信区间。
6) second order stochastic dominance
经验似然法
1.
Non-parametric testing procedures based upon the two-sample empirical likelihood method have been developed for testing two kinds of second order stochastic dominance between nonnegative random variables.
对非参数试验;;基于两种不同样本经验似然法。
补充资料:极大似然估计
极大似然估计法是求估计的另一种方法。它最早由高斯提出。后来为费歇在1912年的文章中重新提出,并且证明了这个方法的一些性质。极大似然估计这一名称也是费歇给的。这是一种上前仍然得到广泛应用的方法。它是建立在极大似然原理的基础上的一个统计方法,极大似然原理的直观想法是:一个随机试验如有若干个可能的结果A,B,C,%26#8230;。若在一次试验中,结果A出现,则一般认为试验条件对A出现有利,也即A出现的概率很大。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条