1) Star neighbor
星形邻域
2) rhombus neighborhood
菱形邻域
3) square neighborhood
方形邻域
1.
By the grid-based method,NDOD expands square neighborhood by breadth-first search,it can reduce neighbo.
NDOD吸收基于网格方法的思想,以广度优先扩张方形邻域,成倍地减少了邻域查询的次数,从而快速排除聚类点并克服基于网格方法中的"维灾"。
4) spherical neighbourhood
球形邻域
1.
The property of a class of special distance space called super-distance space is studied,including its spherical neighbourhood,cauchy sequence,connectedness,completedness, etc.
研究了一类被称为超距空间的特殊度量空间的性质 ,包括它的球形邻域、cauchy序列、连通性、完备性等性质 。
5) neighborhood complex
邻域复形
1.
Some structures and properties of neighborhood compleies of trees are discussed and several conditions that high dimention 2-forest is neighborhood complex of tree are ob-tained.
研究了树的邻域复形的结构和性质,得出了几种高维2—林是树的邻域更形的条件。
2.
Define the neighborhood complex N(G) as the simplicial complex whose simplices are those subsets of V(G) which have a common neighbor.
一个图G的邻域复形是以G的顶点为顶点,以G的具有公共邻接顶点的顶点子集为单形的抽象复形。
6) rectangular neighborhood
矩形邻域
补充资料:星形-三角形变换
一种简单的电路间等效变换。 以阻抗为参数的3个电路元件的星形连接如图1所示, 三角形连接如图2所示。当这两种连接有相同的外特征时,二者便可等效互换。互换的规则是:将星形连接变换成三角形连接,要求后者的参数与前者的参数之间有如下的关系,即 (1)
反之,将三角形连接变换成星形连接,则需要
(2)
当Z1=Z2=Z3=Z时,式(1)简化为Z12=Z23=Z31=3ZZ12=Z23=Z31=Z 时,式(2)简化为式(1)和式(2)称为两种连接间的互换公式。
反之,将三角形连接变换成星形连接,则需要
(2)
当Z1=Z2=Z3=Z时,式(1)简化为Z12=Z23=Z31=3ZZ12=Z23=Z31=Z 时,式(2)简化为式(1)和式(2)称为两种连接间的互换公式。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条