1) mixed effects linear model
混合效应线性模型
1.
Objective: In this article,a repeated measures data was analyzed in order to explain the application and characteristic of mixed effects linear model which was compared with single effects analysis of variance in order to account for it s use.
目的:通过混合效应线性模型与单因素方差分析在重复测量资料中的应用比较,旨在说明两方法在处理重复测量资料时的应用特点。
2) linear mixed effects model
线性混合效应模型
1.
According the characteristics of the bivariate repeated measurement data,using the MIXED procedure of SAS software to fit linear mixed effects model.
为了探讨环境医学研究中不满足独立性要求资料相关性分析的方法,针对双反应变量重复测量资料的特点,采用SAS软件的MIXED过程,建立线性混合效应模型。
3) generalized linear mixed models
广义线性混合效应模型
1.
Objective :To discuss generalized linear mixed models(GLMMs) of categorical repeated measurement datas in clinical curative effect evaluation,implementing with GLIMMIX macro in SAS8.
目的:探讨临床疗效评价中分类重复测量资料的广义线性混合效应模型(GLMMs)及SAS8。
4) Nonlinear mixed effect model
非线性混合效应模型
1.
Estimation of relative clearance of cyclosporin A with nonlinear mixed effect model in kidney transplant patients;
非线性混合效应模型法估算肾移植患者环孢素A的相对清除率
2.
Evaluation of relative bioavailability and pharmacokinetic parameters of ciclosporin preparations by nonlinear mixed effect model;
非线性混合效应模型估算环孢素在人体相对生物利用度和药动学参数
3.
Estimation of relative clearance of cyclosprine A in patients after renal transplantation using nonlinear mixed effect model;
非线性混合效应模型法估算肾移植患者环孢素A清除率
5) Nonlinear mixed effect model(NONMEM)
非线性混合效应模型法
1.
Nonlinear mixed effect model(NONMEM) has been widely used in estimating population pharmacokinetics parameters of various drugs.
非线性混合效应模型法广泛应用于临床各类药物的群体药动学参数估算。
6) Linear mixed-effects model
线性混合效应模型
1.
In this paper, the linear mixed-effects model of repeated measurements is discussed, and the repeated measurements data obtain reasonable results by the fixed and random effects along with efficient estimate of covariance matrix.
本文阐述了重复测量资料的特点,对一般线性模型及线性混合效应模型进行了简要对比;并探讨了重复测量数值型变量线性混合效应模型拟合方法,通过对固定效应、随机效应及协方差矩阵的估计,使重复测量数据得以更合理的分析。
补充资料:多元线性回归模型
分子式:
CAS号:
性质:假定从理论上或经验上已经知道输出变量y是输入变x1,x2,…,xm的线性函数,但表达其线性关系的系数是未知的,要根据输入输出的n次观察结果(c11,x21,…,xml,yi)(i=1,n)来确定系数的值。按最小二乘法原理来求出系数值,所得到的模型为多元线性回归模型。
CAS号:
性质:假定从理论上或经验上已经知道输出变量y是输入变x1,x2,…,xm的线性函数,但表达其线性关系的系数是未知的,要根据输入输出的n次观察结果(c11,x21,…,xml,yi)(i=1,n)来确定系数的值。按最小二乘法原理来求出系数值,所得到的模型为多元线性回归模型。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条