1) EMG
肌电信号
1.
RQA-BASED ANALYSIS OF SURFACE EMG SIGNALS;
基于定量分析方法的动作表面肌电信号分析
2.
Method of mathematics treatment in the EMG analysis;
表面肌电信号分析中的数学处理方法
3.
Prosthetic Hand Control Based on EMG Signals;
基于肌电信号的仿人型假手控制
2) electromyography
[英][i,lektrəumai'ɔgrəfi] [美][ɪ,lɛktromaɪ'ɑgrəfɪ]
肌电信号
1.
Surface electromyography processing based on recurrence quantification analysis;
基于定量递归分析(RQA)方法的肌电信号处理
2.
We used an algorithm based on single value decomposition to decomposed the signal into tow time- orthogonal subspaces: one contains ECG signal, the other contains artificial noise such as baseline wander and electromyography.
使用一种基于奇异值分解 (SVD)的算法 ,将信号分解为两个时正交的子空间即一个包含了 ECG信号 ,另一个则包含了人工噪声 ,诸如基线漂移 (BW)和肌电信号 (EMG) ,这种方法利用了存在于 1 2导联心电图中的冗余。
3.
The motion-pattern recognition arithmetic based on s u pport vector machine is proposed to enhance the discrimination rate and the real-time of multi-movement pattern recognition of surface electromyography.
为了提高肌电信号多运动模式识别的准确性和实时性,提出了一种基于支持向量机的动作模式分类算法。
3) myoelectric signal
肌电信号
1.
Identification of Myoelectric signals of the paralysed patient’s leg motions;
截瘫病人完成下肢运动的肌电信号分辨
2.
The integral absolute value,autoregressive(AR) model coefficients,and linear cepstrum coefficients are extracted as feature parameters from time segments of the surface myoelectric signals.
待辨识的6类手部动作肌电信号经各特征域变换,提取特征矢量后由BP神经网络分类,根据D-S证据理论对各分类器分类结果进行证据累积,并得到最终分类结果。
3.
Statistical characters of the short time slices of the myoelectric signal of musculus flexor carpi ulnaris are preprocessed,then the results are given as the input of self-organization neural network to classify time slices and to find the action start time slice.
提出一种提取尺侧腕屈肌表面肌电信号的短时统计特性,并将此特性预处理后作为自组织人工神经网络输入来判断运动状态,进而实现实时识别人体特定动作起始时刻的方法。
4) surface EMG
肌电信号
1.
Application of improved BP algorithm to surface EMG signal classification;
改进的BP算法在表面肌电信号识别中的应用
2.
Surface EMG Signal Classification Using Wavelet Transform;
小波变换在表面肌电信号分类中的应用
3.
Four types of movement of forearm,hand grasp,hand extension,wrist pronation and wrist supination can be identified from surface EMG s.
针对肌电信号的非平稳特性 ,采用短时傅里叶变换方法对表面肌电信号进行分析 ,并通过奇异值分解有效地提取特征矢量进行模式识别 ,能够成功地从掌长肌和肱桡肌采集的两道表面肌电信号中识别展拳、握拳、腕内旋、腕外旋四种运动模式。
5) Electromyography(EMG)
肌电信号
1.
To eliminate the noise included in electromyography(EMG),a de-noising method by multi-scale product coefficient hard thresholding was presented.
为了消除肌电信号中的噪声,提出了一种基于相邻尺度积系数的硬阈值滤波方法。
2.
Aiming at the key issues of the human-computer technology based on biolelectricity, namely the picking up and analysis of bioelectricty signal, we do the research with academically significance and application possibilities of human-computer interactive technology based on electromyography(EMG).
本文针对基于生物电信号的人机交互技术的关键问题即信息的获取和分析,开展了基于肌电信号检测的人机交互接口技术的研究,研究内容具有重要学术意义和应用前景。
6) NEMG
针电极肌电信号
1.
It is discussed how to evaluate muscle weariness by NEMG in the thesis.
探讨如何利用针电极肌电信号来评价人体的肌肉疲劳。
2.
Generally,abnormal recruitment NEMG is usually used to evaluate the injurious degree of the nerve in clinic.
本文作者提出了一种对前臂肌神经损伤肌肉的针电极肌电信号建立AR模型,提取AR系数并通过BP神经网络判别肌神经损伤的方法。
补充资料:肌电图
肌电图 electromyography 应用电子学仪器记录肌肉静止或收缩时的电活动,及应用电刺激检查神经、肌肉兴奋及传导功能的方法。英文简称EMG。通过此检查可以确定周围神经、神经元、神经肌肉接头及肌肉本身的功能状态。 通过测定运动单位电位的时限、波幅,安静情况下有无自发的电活动,以及肌肉大力收缩的波型及波幅,可区别神经原性损害和肌原性损害,诊断脊髓前角急、慢性损害(如脊髓前灰质炎、运动神经元疾病),神经根及周围神经病变(例如肌电图检查可以协助确定神经损伤的部位、程度、范围和预后)。另外对神经嵌压性病变、神经炎、遗传代谢障碍神经病、各种肌肉病也有诊断价值。此外,肌电图还用于在各种疾病的治疗过程中追踪疾病的恢复过程及疗效。 利用计算机技术,可作肌电图的自动分析,如解析肌电图、单纤维肌电图以及巨肌电图等,提高诊断的阳性率。 肌电图检查多用针电极及应用电刺激技术,检查过程中有一定的痛苦及损伤 ,因此除非必要 ,不可滥用此项检查。另外,检查时要求肌肉能完全放松或作不同程度的用力,因而要求受检者充分合作。对于某些检查,检查前要停药,如新斯地明类药物应于检查前16小时停用。 |
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条