3) Radiofrequency Thermocoagulation
射频热凝术
1.
Selective Percutaneous radiofrequency thermocoagulation for the treatment of trigeminal neuralgia: 26 cases report;
经皮半月神经节射频热凝术治疗三叉神经痛26例报告
2.
Conclusions Selective percutaneous radiofrequency thermocoagulation for treatment of trigeminal neuralgia is.
目的研究选择性射频热凝术治疗三叉神经痛的穿刺方法、疗效、复发率、并发症。
3.
Objective To explore the clinical value of CT guidance combined with nerve electrophysiology in the radiofrequency thermocoagulation of Gasser s ganglion for the trigeminal neuralgia.
目的评价使用CT和神经电生理定位引导射频热凝术穿刺半月神经节治疗原发性三叉神经痛的临床价值。
4) microwave hyperthermia
微波热凝术
1.
Endoscopic or indirect laryngoscopy microwave hyperthermia in the treatment of vocal polyps or nodules;
鼻内镜下或间接喉镜下微波热凝术治疗声带息肉声带小结
6) selectivity of hot condensate
选择性热凝术
1.
Clinical study on the microwave of selectivity of hot condensate and cetirizine therapy for allergic rhinitis;
全部患者均行微波选择性热凝术,而观察组在术后加服西替利嗪。
补充资料:量热术
测量热量的实验方法。其原理是通过已知比热容的某物质温度的变化或已知潜热的某物质状态的变化求出热量。属于间接测量法。可用以测量物质的比热容、熔解热、汽化热和化学反应中放出或吸收的热量等。测量热量的仪器称为量热器,如水量热器、冰量热器、蒸汽量热器和爆炸量热器等。
水量热器 是最简单的一种量热器,结构如图所示。它由二个彼此分开的同轴圆筒组成,内筒中盛有一定质量的水,水中插有搅拌器和温度计。圆筒之间是空气或填以羽毛、玻璃纤维等绝热材料,以减少热传导引起的损失。内圆筒一般用导热性能好的紫铜等金属制成,并镀铬,以减少热辐射引起的损失。外圆筒一般用绝热材料制成,并有盖子,以减少热对流引起的热损失(见热传递。实验时将待测物体投入内筒的水中(要求待测物体完全浸没水中),不停地拉动搅拌器,使温度均匀。测出终温,则待测物体所放出的热量或其比热容皆可求出。设水的质量为m1,比热容为с1,初温为t1,内筒及搅拌器等的折合质量为m2,比热容为с2;待测物体的质量为m3,比热容为с3,初温为t2,平衡时的温度为t。则有m3C3(t2-t)=m1C1+m2C2)(t-t1),式中m2C2称为量热器的水当量,可用实验方法另行测定。这就是混合法测比热容的原理。
冰量热器 1760年首先由苏格兰化学家J.布莱克发明,经过P.S.M.拉普拉斯和R.W.E.本生的改进而趋完善。仪器同水量热器类似,有三个彼此隔开的同轴圆筒,内筒装待测物体,中间圆筒盛满了冰水混合物,并有一根带刻度的毛细管插入筒内,以指示冰水混合物体积的变化。外筒内塞满了碎冰块,以防止待测物同外界发生热交换。当待测物体投入内筒时,将使中间圆筒内的冰融化,使冰水混合物的体积发生变化。根据毛细管中水柱的变化可求出融冰的质量,从而求出待测物体所放出的热量。
水蒸气量热器 是爱尔兰物理学家J.乔利发明的。仪器中的待测物体被挂在灵敏天平的一个臂上,经过精密配平后,将物体浸没于一个大气压的水蒸气中。物体因吸热而从初温上升到水蒸气的温度。它所吸收的热量必然等于相应的饱和水蒸气凝结成水时所放出的热量。仔细地称出所凝结水的质量。如果已知水的汽化热,则可求出物体的比热容;如果已知物体的比热容,则可求出水的汽化热。
爆炸量热器 工作原理与水量热器相同,只是用于测量气体、液体或固体的燃烧值。量热器的圆筒是用坚固的钢筒或合金材料制成,使之能承受燃烧时的爆炸力。由于燃料燃烧时发出大量热量,故一般用流水来吸收此热量。
参考书目
I. Estermann,Methods of Experimental Physics,Vol.1, Academic Press, New York, 1959.
水量热器 是最简单的一种量热器,结构如图所示。它由二个彼此分开的同轴圆筒组成,内筒中盛有一定质量的水,水中插有搅拌器和温度计。圆筒之间是空气或填以羽毛、玻璃纤维等绝热材料,以减少热传导引起的损失。内圆筒一般用导热性能好的紫铜等金属制成,并镀铬,以减少热辐射引起的损失。外圆筒一般用绝热材料制成,并有盖子,以减少热对流引起的热损失(见热传递。实验时将待测物体投入内筒的水中(要求待测物体完全浸没水中),不停地拉动搅拌器,使温度均匀。测出终温,则待测物体所放出的热量或其比热容皆可求出。设水的质量为m1,比热容为с1,初温为t1,内筒及搅拌器等的折合质量为m2,比热容为с2;待测物体的质量为m3,比热容为с3,初温为t2,平衡时的温度为t。则有m3C3(t2-t)=m1C1+m2C2)(t-t1),式中m2C2称为量热器的水当量,可用实验方法另行测定。这就是混合法测比热容的原理。
冰量热器 1760年首先由苏格兰化学家J.布莱克发明,经过P.S.M.拉普拉斯和R.W.E.本生的改进而趋完善。仪器同水量热器类似,有三个彼此隔开的同轴圆筒,内筒装待测物体,中间圆筒盛满了冰水混合物,并有一根带刻度的毛细管插入筒内,以指示冰水混合物体积的变化。外筒内塞满了碎冰块,以防止待测物同外界发生热交换。当待测物体投入内筒时,将使中间圆筒内的冰融化,使冰水混合物的体积发生变化。根据毛细管中水柱的变化可求出融冰的质量,从而求出待测物体所放出的热量。
水蒸气量热器 是爱尔兰物理学家J.乔利发明的。仪器中的待测物体被挂在灵敏天平的一个臂上,经过精密配平后,将物体浸没于一个大气压的水蒸气中。物体因吸热而从初温上升到水蒸气的温度。它所吸收的热量必然等于相应的饱和水蒸气凝结成水时所放出的热量。仔细地称出所凝结水的质量。如果已知水的汽化热,则可求出物体的比热容;如果已知物体的比热容,则可求出水的汽化热。
爆炸量热器 工作原理与水量热器相同,只是用于测量气体、液体或固体的燃烧值。量热器的圆筒是用坚固的钢筒或合金材料制成,使之能承受燃烧时的爆炸力。由于燃料燃烧时发出大量热量,故一般用流水来吸收此热量。
参考书目
I. Estermann,Methods of Experimental Physics,Vol.1, Academic Press, New York, 1959.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条