1) Williams design
Williams设计
1.
Sample size calculation for Williams design in clinical trials;
临床试验Williams设计中样本含量的估算方法
2.
Methods The Williams design in three periods and three treatments cross-over trial was discussed through a real example of clinical trial.
目的探讨交叉试验中的Williams设计及其在临床试验应用时的随机化与检验效能分析。
2) Choi Williams Distribution
Choi-Williams
3) Williams' model
Williams模型
4) Choi-Williams distribution
Choi-Williams分布
1.
Using Choi-Williams distribution to extract feature from signal can effectively inhibit Wigner-Ville distribution s cross-terms,but meanwhile,decreast the aggregation of time-frequency.
利用Choi-Williams分布,可以有效地抑制上述存在的交叉项问题,但其时频聚集性有所下降。
2.
In this paper, the frequency characteristics of six cases of normal first and second heart sounds and one case of abnormal heart sound were analyzed by using wavelet transform and Choi-Williams distribution.
我们分别采用小波变换和Choi-Williams分布两种方法对六例正常第一、第二心音和一例异常心音的频率特性进行了研究。
5) Williams-Wittrick algorithm
Williams-Wittrick算法
6) wittrick-williams algorithm
Wittrick-Williams算法
1.
The method integrates several techniques such as the Wittrick-Williams algorithm and the guided and guarded Newton method in the exact dynamic stiffness method(DSM) for the vibration analysis of skeletal structures,and the self-adaptive FEM for linear BVP based on the Element Energy Projection(EEP) super-convergence calculation.
本文将杆系结构自由振动精确分析的Wittrick-Williams算法、导护型Newton法和基于单元能量投影(EEP)超收敛计算的自适应有限元法有机结合,应用于平面变截面曲梁面内自由振动的分析,可以得到数值精确解,即频率和振型的精度均可满足用户事先给定的误差限。
2.
The method integrates several techniques such as the Wittrick-Williams algorithm and the guided and guarded Newton method in the exact Dynamic Stiffness Method(DSM) for the vibration analysis of skeletal structures,and the self-adaptive FEM for linear BVP based on the Element Energy Projection(EEP) super-convergence calculation.
该文将杆系结构自由振动精确分析的Wittrick-Williams算法、导护型Newton法和基于单元能量投影(EEP)超收敛计算的自适应有限元法有机结合,应用于平面变截面曲梁面内自由振动的分析,可以得到数值精确解,即频率和振型的精度均可满足用户事先给定的误差限。
补充资料:Williams theory
分子式:
CAS号:
性质:一种关于高分子流体非牛顿流动行为的分子理论。由此理论可知:聚合物流体的黏度系数η与零剪切速率黏度系数η0的比值,η/η0是松弛时间λ和剪切速率γ的乘积的函数。
CAS号:
性质:一种关于高分子流体非牛顿流动行为的分子理论。由此理论可知:聚合物流体的黏度系数η与零剪切速率黏度系数η0的比值,η/η0是松弛时间λ和剪切速率γ的乘积的函数。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条