1) Ion source temperature
离子源温度
2) Ion temperature
离子温度
1.
The ion temperatures and the ratio of hydrogen to deuterium were obtained by using this system.
利用自行研制的振镜扫描光谱仪在HT 7托卡马克装置上建立起光谱线轮廓诊断系统,并对等离子体离子温度和H/D含量比进行测量。
2.
The local ion temperature and rotation velocity has been derived using a chosen point fitting technique.
1nm谱线线形分布,通过选点拟合得到了等离子体离子温度和旋转速度。
3.
Making use of a Fabry-Perot interferometer driven by a piezoelectric crystal and selecting the suitable separation of plates, the ion temperature is defined by measuring the superimposed profile of the spectral line pair of the same ionized state ions in Tokamak.
利用压电晶体驱动 Fabry-Perot干涉仪并选择合适的板距 ,通过测量托卡马克等离子体同电离态杂质离子光谱线对的叠加轮廓分布 ,给出对应的离子温度。
3) positive-ion temperature
正离子温度
5) ITG mode
离子温度梯度模
1.
The energy cascade process in the ITG mode turbulence and the relationship between Reynolds stress and zonal flow are also discussed.
在离子温度梯度模(ITG)湍流背景中,通过最小自由度模型中模耦合方式产生带状流,对此模型做了动力学稳定性分析及数值求解。
6) plasma temperature
等离子体温度
1.
Four coal samples with different particle size were analyzed at an experiment setup of sufficient parameters,and the spectral lines of calcium ions were used to analysis the plasma temperature together with the distribution of spectrum intensity of different lines.
5μs区间内的等离子体温度,并依据谱线Stark展宽与电子密度的关系得到了等离子体的电子密度。
2.
The arc plasma temperature is about 4 300~4 400K,and the error is about 100K.
放电过程中的电弧等离子体光谱测试表明其中主要有C2分子的发射峰,光谱分布曲线与普朗克黑体辐射曲线中T=4 350 K的分布情况吻合,确定放电电弧等离子体温度约4 300~4 400k,测量误差约100 K。
3.
The research results show that the current exhibit a saturation effect in the I V curves of plasma signal with increasing voltage in the negative voltage region, and the plasma temperature is higher than the vaporzation temperature of welded.
研究结果表明 ,在负电压段 ,等离子体电信号的电流随电压增加呈现饱和趋势 ;理论与试验曲线比较证明 ,等离子体温度高于被焊材料气化温度约 30 0 K。
补充资料:铂电阻温度表(见电阻温度表)
铂电阻温度表(见电阻温度表)
表。bod旧nZu wendubiao铂电阻温度表见电阻温
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条