1) pool boiling heat transfer
池沸腾换热
1.
Electric field enhancement of convection and pool boiling heat transfer on plate surface immersed in ether;
电场强化乙醚自然对流和池沸腾换热
2.
The pool boiling heat transfer characteristics of R11, R113 and non-azeotropic mixture R11/R113 are studied experimentally on the smooth surface and three different mechanically fabricated porous surfaces (MFPS) in this paper.
对纯R11、R113及R11/R113非共沸混合工质在平壁面和机加工多孔壁面(MFPS)上的池沸腾换热特性进行了实验研究。
2) Boiling Heat Transfer
沸腾换热
1.
A theoretical model for pool boiling heat transfer of refrigerant binary mixtures;
双组分混合制冷工质沸腾换热理论研究
2.
Effects of electric field distribution on R123 boiling heat transfer enhancement;
电场分布对R123沸腾换热的影响
3.
Analysis on factors influencing electrohydrodynamics-enhanced pool boiling heat transfer;
均匀电场对池沸腾换热的影响分析
3) Boiling
[英]['bɔɪlɪŋ] [美]['bɔɪlɪŋ]
沸腾换热
1.
Experimental Research on Boiling Heat Transfer Characteristics of Nanofluids in Miniture Flat Heat Pipe Evaporator with Micro-Grooved Surface;
小型重力型微槽道平板热管蒸发器内纳米流体沸腾换热特性的实验研究
2.
An experiment was carried out for the compound enhancement effects of the roll worked enhanced tubes and the restricted spaces incorperating the compact flooded type tube bundle on nucleate boiling characteristics of salt water under atmospheric pressure.
采用满液式蒸发换热器 ,利用强化传热管管束受限空间内早期沸腾强化机理 ,将中小热负荷条件下的自然对流换热转化为核沸腾换热。
4) non boiling heat transfer
无沸腾换热
5) volume heated boiling pool
体热源沸腾池
1.
Modeling of volume heated boiling pool and its validation;
体热源沸腾池的建模及其验证
2.
The UO_2-steel mixed volume heated boiling pool formed in the later stage of the a.
采用两流体模型来描述冷却剂的两相热工水力行为;包壳的流动、燃料的熔化及塌陷采用类似SURFA SS程序的经验性方法处理;对于事故后期形成的UO2-钢混合体热源沸腾池,采用一维半经验模型描述。
6) boiling crisis
沸腾换热恶化;沸腾危机
补充资料:沸腾换热
液体在加热面上沸腾时的换热过程,是具有相变特点的两相流换热。当加热面温度TW超过液体的饱和温度TS并达到一定数值时,液体即在加热面的某些点上形成汽泡。这些点称为汽化核心,通常出现在加热表面的小凹坑上。汽泡形成后不断长大、脱离、上浮。汽泡在形成长大过程中吸收大量汽化潜热,汽泡的脱离和上升运动又产生剧烈扰动,所以沸腾换热比单相流体的对流换热强烈得多。汽泡脱离加热表面后,如果液体尚未达到饱和温度,则汽泡对液体放热后会凝结消失,这时称为过冷沸腾;如果液体已达到饱和温度,则汽泡将继续吸热长大,直至逸出液面,这时称为饱和沸腾。对于这两种沸腾,汽化核心都有重要作用,所以又称核状沸腾。
随着通过加热面的热流密度q的增加,汽化核心增多,汽泡生成的频率也不断加快,直至加热面上生成的汽泡因为来不及脱离而连成汽膜,即过渡到膜状沸腾。这层汽膜将液体与加热面隔开,热量只能靠辐射和汽膜的传导由加热面传入,因此传热系数大为降低,壁面温度急剧上升,甚至会导致最终烧毁。开始形成膜状沸腾时的热流密度称为临界热流密度。在工程实践中,热流密度应严格控制在临界值以下。汽泡的形成和沸腾状态的过渡,与液体的物性、纯度、状态参数以及加热表面的性质和重力加速度等因素有关。图为池水的沸腾曲线。
沸腾换热常见于锅炉、 蒸发器、 蒸馏塔等设备中。由于其换热系数大,也常用于一些需要强冷却和强化传热的场合,如火箭发动机及其尾喷管、核反应堆堆芯、连续浇铸、金属淬火和热管技术等。在实际应用中,沸腾通常是在流动状态下进行的,其影响因素更为复杂。
随着通过加热面的热流密度q的增加,汽化核心增多,汽泡生成的频率也不断加快,直至加热面上生成的汽泡因为来不及脱离而连成汽膜,即过渡到膜状沸腾。这层汽膜将液体与加热面隔开,热量只能靠辐射和汽膜的传导由加热面传入,因此传热系数大为降低,壁面温度急剧上升,甚至会导致最终烧毁。开始形成膜状沸腾时的热流密度称为临界热流密度。在工程实践中,热流密度应严格控制在临界值以下。汽泡的形成和沸腾状态的过渡,与液体的物性、纯度、状态参数以及加热表面的性质和重力加速度等因素有关。图为池水的沸腾曲线。
沸腾换热常见于锅炉、 蒸发器、 蒸馏塔等设备中。由于其换热系数大,也常用于一些需要强冷却和强化传热的场合,如火箭发动机及其尾喷管、核反应堆堆芯、连续浇铸、金属淬火和热管技术等。在实际应用中,沸腾通常是在流动状态下进行的,其影响因素更为复杂。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条