1) Symmetric basis for irreducible representation of permutation group S3
置换群S3不可约表示之基
3) irreducible representation
不可约表示的基
1.
By using two different methods, we acquire irreducible representation radix of circularity molecule.
利用体系的对称性,用两种不同方法求出对环状(CH)n分子的不可约表示的基,大大地简化了计算。
4) Irreducible representation basis
不可约表示基
5) irreducible representation
不可约表示
1.
So that we can use irreducible representation of SU(2) symmetry to classry energy elgenvalues.
本文介绍了简单Hükel模型,讨论了线性共轭聚合物CnHn+2中的SU(2)对称,并从理论上说明,我们可以用H0=αN+βJZ,近似代替H=αN+βq,r′qr,以便用SU(2)群的不可约表示分类能量本征态,从而将通常量子力学中的群论方法用到聚乙稀共轭分子上。
2.
The Helmholtz free energy expansion of the Rochelle salt crystal is obtained by the basis function of the irreducible representations ofthe paraelectric phase group D2.
利用罗息盐晶体顺电相所属晶体点群-D2群不可约表示的基函数,构造出该晶体亥姆霍兹自由能展开式。
3.
Many of the important applications of complex Clifford algebra come from the irreducible representation of complex Clifford algebra.
有关复 Clifford代数的许多重要应用来源于复 Clifford代数的不可约表示。
6) irreducible representations
不可约表示
1.
The irreducible representations of Brauer algebras are constructed using an induced representation method.
08利用诱导表示的方法构造了Brauer代数不可约表示,并给出了计算任意不可约表示的维数公式。
补充资料:置换群
由置换组成的群。n 元集合到它自身的一个一一映射,称为Ω上的一个置换或 n元置换。Ω上的置换σ可表为或简记为,其中i1,i2,...,in是1,2,...,n的一个排列,α是 αk在置换σ下的像。有时也把α 在σ下的像记为ασ。根据映射的乘法可以定义Ω上任意两个置换σ与τ的乘积στ为。对于这样定义的运算,Ω上全体置换所组成的集合Sω成一个群,称为Ω上的对称群或n元对称群,简称对称群,其阶为 n!。对称群的子群称为Ω上的置换群或简称置换群。当Ω={1,2,...,n}时把Sω 记为Sn。较置换群更为一般的概念,有所谓的作用。
作用 G是一个群,Ω是一个非空集合。G中每个元素g都对应Ω的一个映射:x→xg,x∈Ω,若满足:①;②xe=x(e是G的单位元素),则称G作用于Ω上。G作用于Ω上的充分必要条件是,G同态于Ω上的一个置换群。
设G是Ω上的一个置换群,H是Γ上的一个置换群。如果存在Ω到Γ上的一个一一对应ρ,以及G到H上的一个一一对应φ,使得对Ω中任一个点α及G中任一个置换g都有,那么G与H 称为置换同构的。两个置换同构的置换群一定是同构的。但是同构的置换群不一定是置换同构的。
如果 Ω与Γ都是n元集合,那么Sω与Sг是置换同构的。因此,n元对称群都与Sn置换同构。
设σ是Ω上一个置换,若Ω中一些点α1,α2,...,αs使得而σ保持Ω中其余的点不动,那么σ称为一个轮换,记作(α1,α2,...,αs)。若两个轮换没有公共的变动点,则称这两个轮换是不相交的。每一个置换都可表为不相交轮换的乘积,称为置换的轮换表示法,而且除表示式中轮换的次序以外,置换的轮换表示法是惟一的。
两个点的轮换称为对换。任一置换都可表为一些对换的乘积,表示法不是惟一的,但是表示式中对换个数的奇偶是惟一确定的。若σ可表成偶数个对换的乘积,则称σ为偶置换。若σ可表成奇数个对换的乘积,则称σ为奇置换。
Sω中全部偶置换组成Sω的一个正规子群,称为n元交错群,简称交错群,记作Aω。Sn的交错子群记作An。n元交错群都与An置换同构。当n≥2时,An的阶为n!/2。当n≠4时,An是单群,这是一类很重要的有限单群。
置换群是有限群的一类重要例子,有限群的研究是从置换群开始的。置换群的重要性还在于下述事实。
凯莱定理 任一有限群都与其元素的一个置换群同构。
区及轨道 设G是Ω上一个置换群,墹是Ω的一个子集,g是G中任一元素,用墹g表示墹在g下的像集。若对于G中任一元素 g都有墹g=墹,或,则称墹是一个区。空集═以及Ω都是区,称为平凡区。其余的区称为非平凡区。两个区的交仍是区。
若对G中任一元素g,都有墹g=墹,则称 墹是G的一个不变区。Ω及═都是不变区。不变区的交仍是不变区。
设墹是G的一个不变区,如果对墹中任意两个点α、β都有G中一个元素g使得αg=β,那么墹称为G 的一个轨道(或传递集)。如果墹是G 的一个轨道,那么,任取墹中一个点α,都有。而且,G 的任一个轨道都可这样得到。如果墹及Γ是G 的两个轨道,那么墹=Г 或墹∩Г=═。因此,Ω分成G 的一些两两不交的轨道之并。轨道中元素的个数称为轨道的长度。
稳定子群 设G是一个n元置换群,作用于Ω上。取定Ω中一个点α,是G 的一个子群,称为G 对α 的稳定子群。如果,并设(通常取恒等置换作为g1),那么。因此,|G|=|Gα||αG|,所以G 的轨道的长度一定能整除G 的阶。
如果对任一α∈Ω,都有Gα={e},则称G是半正则群。此时,G的任一轨道长都等于|G|。
稳定子群的概念还可以推广到多个点的情形。取定Ω中k个点α1,α2,...,αk,则是G的一个子群,称为G对α1,α2,...,αk的稳定子群。显然有。
传递性 设G是Ω上一个置换群。若对任意α,β∈Ω,都可找到g∈G,使得αg=β,则称G在Ω上是传递的;否则,称G是非传递的。G是传递群当且仅当Ω是 G的一个轨道。因此,若G是传递群,则|Ω|是|G|的一个因子。若G是传递群,且|Ω|=|G|,则称G是一个正则群。正则群就是传递的半正则群。
若在一个非正则传递群G中,每个非单位元素最多保持一个文字不变,则G 称为弗罗贝尼乌斯群。在弗罗贝尼乌斯群G中,没有不变文字的置换与恒等置换一起构成一个正则群R,R是G 的一个特征子群。
若对于Ω中任意两个k元有序点组α1,α2,...,αk及β1,β2,...,βk,都有G中一个置换g使,则称G是一个 k重传递群或 k传递群。k重传递群一定是(k-1)重传递的。如果k≥2,那么k重传递群称为多重传递群,否则称为单传递群。如果G是Ω上一个传递群,那么当且仅当Gα在Ω-{α}上(K-1)重传递群时,G是k重传递的。k重传递的n元置换群G 的阶可被n(n-1)...(n-k+1)整除。若G 的阶恰等于n(n-1)...(n-k+1),则称G是一个精确 k重传递群。此时,对于Ω中任意两个k元点组α1,α2,...,αk;β1,β2,...,βk,在G中恰有一个g使α=βi,i=1,2,...,k。
对称群Sn是 n重传递的,交错群An是n-2重传递的。除去Sn及An外,有无穷多个3重传递群,但是只知道4个4重传递群,它们是法国数学家 ??.L.马蒂厄在1861年及1873年先后发现的次数分别为11,12,23及24的马蒂厄群M11,M12,M23,M24,其中M12及M24是5重传递的,而且M11是M12的稳定子群,M23是M24的稳定子群,它们的阶分别是
。M11及M12都是精确传递群。
在1981年有限单群分类的问题解决以后,所有双重传递群已被决定,并且知道没有传递重数大于或等于6的传递单群,而交错群与上述4个马蒂厄群是仅有的4重传递的单置换群。M23的稳定子群是M22,也是一个单群,这5 个马蒂厄群是最早发现的不属于有限单群的无穷系列的5个零散单群。
秩 设G是Ω上的一个传递置换群,α∈Ω,G对α的稳定子群Gα作为Ω上的置换群,其轨道(包括平凡轨道{α})数称为G的秩。显然,当且仅当G的秩等于2时,G是双传递的。秩为 3的单传递群是一类很重要的单传递群,在26个零散单群中,有8个是作为秩是3的置换群构造出来的群。
本原性 设G是Ω上一个传递群,若G没有非平凡区, 则称G是一个本原群,否则称为非本原群。多重传递群一定是本原群,Ω上传递群G是本原群的充分必要条件为其稳定子群Gα(α∈Ω)是G的极大子群。如果Ω上一个置换群G是k重传递的,并且对k-1个点的稳定子群在其余的点上是本原的,那么G称为k重本原的。
k重集传递性及半传递性 比k重传递性较弱的一个概念是k重集传递性。设G是Ω上一个置换群,若对于Ω的任意两个k元子集Δ、Γ都可找到 G中一个元素g 使得Δg=Γ,则称G是k重集传递的。传递性的另一个推广是所谓半传递性,若G的轨道长都相等且大于1,则G称为半传递的,或重传递的。
置换群的一个古老而有意义的问题,是找出全部互不置换同构的置换群。至今,已找出次数小于或等于11的全部置换群。所谓置换群的次数,即这个置换群所有实际变动的点的个数。当12≤n≤15时找出了全部n次传递群。而当n较大时,仅对n≤50找出了全部n次本原群。
参考书目
H.Wielandt,Finite Permutation Groups, AcademicPress, New York,1964.
D.Passman,Permutation Groups, Benjamin, New York,1968.
B.Huppert and N.Blackburn,Finite Groups, Vol.3,Springer-Verlag, Berlin,1982.
作用 G是一个群,Ω是一个非空集合。G中每个元素g都对应Ω的一个映射:x→xg,x∈Ω,若满足:①;②xe=x(e是G的单位元素),则称G作用于Ω上。G作用于Ω上的充分必要条件是,G同态于Ω上的一个置换群。
设G是Ω上的一个置换群,H是Γ上的一个置换群。如果存在Ω到Γ上的一个一一对应ρ,以及G到H上的一个一一对应φ,使得对Ω中任一个点α及G中任一个置换g都有,那么G与H 称为置换同构的。两个置换同构的置换群一定是同构的。但是同构的置换群不一定是置换同构的。
如果 Ω与Γ都是n元集合,那么Sω与Sг是置换同构的。因此,n元对称群都与Sn置换同构。
设σ是Ω上一个置换,若Ω中一些点α1,α2,...,αs使得而σ保持Ω中其余的点不动,那么σ称为一个轮换,记作(α1,α2,...,αs)。若两个轮换没有公共的变动点,则称这两个轮换是不相交的。每一个置换都可表为不相交轮换的乘积,称为置换的轮换表示法,而且除表示式中轮换的次序以外,置换的轮换表示法是惟一的。
两个点的轮换称为对换。任一置换都可表为一些对换的乘积,表示法不是惟一的,但是表示式中对换个数的奇偶是惟一确定的。若σ可表成偶数个对换的乘积,则称σ为偶置换。若σ可表成奇数个对换的乘积,则称σ为奇置换。
Sω中全部偶置换组成Sω的一个正规子群,称为n元交错群,简称交错群,记作Aω。Sn的交错子群记作An。n元交错群都与An置换同构。当n≥2时,An的阶为n!/2。当n≠4时,An是单群,这是一类很重要的有限单群。
置换群是有限群的一类重要例子,有限群的研究是从置换群开始的。置换群的重要性还在于下述事实。
凯莱定理 任一有限群都与其元素的一个置换群同构。
区及轨道 设G是Ω上一个置换群,墹是Ω的一个子集,g是G中任一元素,用墹g表示墹在g下的像集。若对于G中任一元素 g都有墹g=墹,或,则称墹是一个区。空集═以及Ω都是区,称为平凡区。其余的区称为非平凡区。两个区的交仍是区。
若对G中任一元素g,都有墹g=墹,则称 墹是G的一个不变区。Ω及═都是不变区。不变区的交仍是不变区。
设墹是G的一个不变区,如果对墹中任意两个点α、β都有G中一个元素g使得αg=β,那么墹称为G 的一个轨道(或传递集)。如果墹是G 的一个轨道,那么,任取墹中一个点α,都有。而且,G 的任一个轨道都可这样得到。如果墹及Γ是G 的两个轨道,那么墹=Г 或墹∩Г=═。因此,Ω分成G 的一些两两不交的轨道之并。轨道中元素的个数称为轨道的长度。
稳定子群 设G是一个n元置换群,作用于Ω上。取定Ω中一个点α,是G 的一个子群,称为G 对α 的稳定子群。如果,并设(通常取恒等置换作为g1),那么。因此,|G|=|Gα||αG|,所以G 的轨道的长度一定能整除G 的阶。
如果对任一α∈Ω,都有Gα={e},则称G是半正则群。此时,G的任一轨道长都等于|G|。
稳定子群的概念还可以推广到多个点的情形。取定Ω中k个点α1,α2,...,αk,则是G的一个子群,称为G对α1,α2,...,αk的稳定子群。显然有。
传递性 设G是Ω上一个置换群。若对任意α,β∈Ω,都可找到g∈G,使得αg=β,则称G在Ω上是传递的;否则,称G是非传递的。G是传递群当且仅当Ω是 G的一个轨道。因此,若G是传递群,则|Ω|是|G|的一个因子。若G是传递群,且|Ω|=|G|,则称G是一个正则群。正则群就是传递的半正则群。
若在一个非正则传递群G中,每个非单位元素最多保持一个文字不变,则G 称为弗罗贝尼乌斯群。在弗罗贝尼乌斯群G中,没有不变文字的置换与恒等置换一起构成一个正则群R,R是G 的一个特征子群。
若对于Ω中任意两个k元有序点组α1,α2,...,αk及β1,β2,...,βk,都有G中一个置换g使,则称G是一个 k重传递群或 k传递群。k重传递群一定是(k-1)重传递的。如果k≥2,那么k重传递群称为多重传递群,否则称为单传递群。如果G是Ω上一个传递群,那么当且仅当Gα在Ω-{α}上(K-1)重传递群时,G是k重传递的。k重传递的n元置换群G 的阶可被n(n-1)...(n-k+1)整除。若G 的阶恰等于n(n-1)...(n-k+1),则称G是一个精确 k重传递群。此时,对于Ω中任意两个k元点组α1,α2,...,αk;β1,β2,...,βk,在G中恰有一个g使α=βi,i=1,2,...,k。
对称群Sn是 n重传递的,交错群An是n-2重传递的。除去Sn及An外,有无穷多个3重传递群,但是只知道4个4重传递群,它们是法国数学家 ??.L.马蒂厄在1861年及1873年先后发现的次数分别为11,12,23及24的马蒂厄群M11,M12,M23,M24,其中M12及M24是5重传递的,而且M11是M12的稳定子群,M23是M24的稳定子群,它们的阶分别是
。M11及M12都是精确传递群。
在1981年有限单群分类的问题解决以后,所有双重传递群已被决定,并且知道没有传递重数大于或等于6的传递单群,而交错群与上述4个马蒂厄群是仅有的4重传递的单置换群。M23的稳定子群是M22,也是一个单群,这5 个马蒂厄群是最早发现的不属于有限单群的无穷系列的5个零散单群。
秩 设G是Ω上的一个传递置换群,α∈Ω,G对α的稳定子群Gα作为Ω上的置换群,其轨道(包括平凡轨道{α})数称为G的秩。显然,当且仅当G的秩等于2时,G是双传递的。秩为 3的单传递群是一类很重要的单传递群,在26个零散单群中,有8个是作为秩是3的置换群构造出来的群。
本原性 设G是Ω上一个传递群,若G没有非平凡区, 则称G是一个本原群,否则称为非本原群。多重传递群一定是本原群,Ω上传递群G是本原群的充分必要条件为其稳定子群Gα(α∈Ω)是G的极大子群。如果Ω上一个置换群G是k重传递的,并且对k-1个点的稳定子群在其余的点上是本原的,那么G称为k重本原的。
k重集传递性及半传递性 比k重传递性较弱的一个概念是k重集传递性。设G是Ω上一个置换群,若对于Ω的任意两个k元子集Δ、Γ都可找到 G中一个元素g 使得Δg=Γ,则称G是k重集传递的。传递性的另一个推广是所谓半传递性,若G的轨道长都相等且大于1,则G称为半传递的,或重传递的。
置换群的一个古老而有意义的问题,是找出全部互不置换同构的置换群。至今,已找出次数小于或等于11的全部置换群。所谓置换群的次数,即这个置换群所有实际变动的点的个数。当12≤n≤15时找出了全部n次传递群。而当n较大时,仅对n≤50找出了全部n次本原群。
参考书目
H.Wielandt,Finite Permutation Groups, AcademicPress, New York,1964.
D.Passman,Permutation Groups, Benjamin, New York,1968.
B.Huppert and N.Blackburn,Finite Groups, Vol.3,Springer-Verlag, Berlin,1982.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条