说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 富里叶交换
1)  ourier transform
富里叶交换
2)  Fourier transform
富里叶变换
1.
A fast Fourier transform based algorithm is presented to measure the real-time frequency of power system and harmonics,as well as the real-time amplitudes and phases of voltages and currents of three phase.
提出了一种快速富里叶变换FFT算法来测量电力系统基波频率和其它谐波频率的实时值,进而计算出三相电压和电流的有效值与相位的实际值。
2.
Utilizing narrow-band filter characteristics of general antennas and receivers, this method is based on UTD and Fourier transform.
利用常用天线和接收机的窄带滤波特性 ,用一致性几何绕射理论 (UTD )和富里叶变换进行分析。
3)  FFT
快速富里叶变换
1.
A fast algorithm for caculating the inverse matrices and multiplication of(R,r)-block circulants by using the Fast Fourier Transform(FFT) and reduced-order method has been given,their computation time complexity are O(mnlog2mn).
利用矩阵分块逐次降阶的方法和快速富里叶变换(FFT),给出了mn阶(R,r)-循环分块矩阵求逆与相乘的一种快速算法,证明了其计算复杂性为O(mnlog2mn)。
4)  fast Fourier transform
快速富里叶变换
1.
A particular feature of this mixed method is that conjugate gradient method (CGM) and fast Fourier transform (FFT) technique are used .
在求解过程中应用共轭梯度法 (CGM)和快速富里叶变换 (FFT)相结合的方法降低所需计算机内存和CPU时间。
5)  inverse Fourier transform
逆富里叶变换
6)  real Fourier transform
实富里叶变换
补充资料:傅里叶级数与傅里叶积分


傅里叶级数与傅里叶积分
Fourier series and integrals

傅里叶级数与傅里叶积分(F ourierse-ries and integrals) 傅里叶级数与傅里叶积分是研究周期现象的数学工具,它在波(例如光波和声波)的运动、振动力学系统(例如振动的弦)和天体轨道理论中是必不可少的。傅里叶级数及下面将要讨论的有关论题,在其他数学分支中有着重要的应用,其中特别值得提出的是概率论和偏微分方程。这个课题本身所促成的一些学科在纯数学的研究中也占有突出的位置。 单实变量函数f有周斯T,如果对每个t,有f(t+T)一f(t)。具有给定周期T的函数的最简单例子是简谐函数,即形如f(t)=aneosn叫+占。sin明的函数,其中。2二T一’是基频,a。,b。是常数。傅里叶级数的应用,其基本思想是:任意满足相当宽的条件且周期为T的函数f能够表为如下式所示的一些纯简谐函数的叠加: f(‘)一艺(a。eosn。:+。。sinn。‘),(1)或者利用复指数表为如f(‘)一艺c。e一(2)所示更为方便的形式。 假定式(2)逐项积分是合法的,则通过简单的计算表明,式‘一T一‘}f(t)。一‘”“dt(3)(积分区间可以是长为T的任意区间)成立。由此可诱导出傅里叶级数的正式定义。假设f是使得积分睽一f(‘’1“‘(4)存在且为有限的周期T的函数,由式(3)定义的系数{‘)是f的傅里叶系数,而式(2)中的级数是f的傅里叶级数。这些系数唯一地确定函数.即若对每一n有‘二一。,则f本质上是零函数。此外,还可以证明,许多对于函数的形式运算,施加到级数逐项进行仍是正确的。由此立即引出两个重要的问题。设s、(,)一名e,了一(5)是f的傅里叶级数的第N个部分和,第一个问题是当N趋于co时:斌t)是否收敛于f(t)?第二个问题是给定了一个序列(c。},它是否为某一函数的傅里叶系数序列? 一个连续函数的傅里叶级数不一定处处收敛。如果t0是一给定点,sN(t。)趋于f(t。)的收敛性依赖于f(t)在t。的邻域内关于t的性态。然而,如果我们取平均的部分和a、一(N+1)一,习s,,(6)则对于连续的f,将一致地有如“f。仅仅知道傅里叶级数的普通收敛性,在应用上并不重要。由于计算上的目的.必须知道一些有关收敛速度的知识。下面的论述这个问题的定理的例子:假设}df/dt}(M处处成立,则有},(,)一(‘),、六M(N+1)一。 黎曼一勒贝格引理断言,若{c。}是一个可积函数的傅里叶系数序列,则当n~士二~时伽~。。但逆命题不真,即并非系数趋于零的所有三角级数艺二‘““(7)都是傅里叶级数。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条