说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 超声纵振珩磨
1)  longitudinal ultrasonic honing
超声纵振珩磨
1.
In order to validate the cutting model and study further surface microscopic feature, some experiments of longitudinal ultrasonic honing of engineering ceramics Zr02 and high strength P steel have been carried out.
为了验证所建模型的正确性及进一步研究超声纵振珩磨的磨削表面特征,本文对工程陶瓷ZrO2和高强度P钢进行了纵向超声振动珩磨试验,通过电镜 SEM观察分析了表面磨削特征,研究表明:纵向超声振动珩磨具有比普通珩磨较大的材料去除率,并且磨削表面光滑,粗糙度低。
2)  ultrasonic vibration honing
超声振动珩磨
1.
An experimental research was carried out with a self-developed ultrasonic vibration honing device to compare the honing efficiency between the power ultrasonic vibration honing and the ordinary honing,and a machining experiment for AZ91D magnesium alloy was also taken by the ultrasonic vibration honing technology to identify the optimum oilstone parameters and process parameters.
利用自行研制的功率超声振动珩磨实验装置,对超声珩磨和普通珩磨的磨削效率进行了对比实验研究,并采用超声振动珩磨技术,对AZ91D镁合金材料进行了加工实验,以确定最佳油石参数及工艺参数。
3)  ultrasonic honing
超声珩磨
1.
Study of key technology for ultrasonic honing acoustics system;
超声珩磨声学系统关键技术研究
2.
Ductile Cutting Characteristics in Ultrasonic Honing on ZrO_2 Ceramics with Coarse Diamond Grits;
粗磨粒金刚石油石超声珩磨ZrO_2陶瓷的延性特征
3.
Local resonance mechanism study on ultrasonic honing complicated a coustic system(Ⅰ);
超声珩磨复杂声学系统的局部共振机理研究(Ⅰ)
4)  ultrasonic vibration honing processing
超声振动珩磨加工
5)  ultrasonic honing
超声波珩磨
6)  ultrasonic honing processing
超声珩磨加工
补充资料:刀刃珩磨:提高刀具性能
针对特定的应用场合加工“合适”的刀刃并非易事。就在前不久,人们还一直认为生成刀刃槽形不是科学,而更是一种艺术,因为切削刀具在耐磨性及硬度质量方面要求很高,因此加工出满意的槽形非常困难。 

但是,加工适当的切削刃对刀具性能及寿命有很大的影响。正确的切削刃加工过程可以降低常见的失效原因,诸如:劈裂、热感应引起的失效以及切屑瘤等而延长刀具寿命,并且可以很大的提高刀具的可靠性。适当珩磨的刀具还可以提高加工工序的重复精度,有助于实现无人看管加工。 

刀刃珩磨是在微观规模上进行的磨蚀过程,需要借助成套过程控制来保持紧密公差。但是,很难在切削刀具材料上控制金属去除率以及刀刃一致性。通常,珩磨过程是通过训练有素的猜测导引的,并且受制于机床的变化以及操作员的技能。 

普通珩磨过程容易过多加工刀具的拐角,并且因为来料各不相同,很难在一把刀一把刀基础上进行控制。不仅刀刃珩磨很难控制,同时由于切削条件也随单个切削刃发生变化,因此加工切削刃的最佳尺寸会随加工工件变化而沿切削刃发生变化。 

密执安科技大学机械工程-工程力学系的副教授,同时是位于密执安州Houghton市的加工分析技术公司的总裁William J. Enders博士认为:“用户要求刀具拐角处刀刃半径较小,因为未切的切屑厚度沿拐角半径减少。”在过去十多年的时间里,他一直在研究刀刃加工方面的问题。 

在刀具的前刃上,未切切屑的厚度最大,刀刃需要最大的保护。但是,在刀具的后刃上,未切切屑厚度几乎下降为0, 因此珩磨量应该相应降低。对于恒定珩磨量——大小为保护前刃而制定,后刃上的珩磨量比未切切屑厚度大,因此切削刃去除材料的速度很低,并提高了摩擦、切削力、温度及磨损。 

直到现在,加工切削刃的方法也没有如切削刀具其他方面有关的技术发展快,诸如材料基质、槽形以及涂层等。利用自己的工程微几何工艺,位于宾夕法尼亚州Cresco市的Conicity科技公司推出了在同一把刀具不同表面上加工出不同尺寸的刀刃珩磨技术。该工艺采用致密碳化硅纤维刷结合计算机数字控制而一贯并精确加工出刀刃形状,公差达0.0003英寸,比大部分传统珩磨方法的精度提高了一个数量级。 

Conicity的执行副总裁Bill Shaffer说:“通过控制刀刃参数,工程微几何工艺可以在达到正确珩磨量时停止材料去除过程。因此,刀刃加工尺寸在切削刃上分布开,维持某特定的未切切屑厚度对刀刃加工尺寸比。”他继续说:“例如,在一把可转位刀片或刀座式刀具上,在刀具端部半径处,刀刃加工融合了刀刃加工过程中未切切屑厚度变化。随着未切切屑厚度降低,刀刃加工尺寸降低。” 

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条