1) mining period
回采周期
1.
The progressed one is flat bottomed tundish stripping along incline and once filling afterwards,It reduced stope loss rate,shortened stope mining period,raised stope productive capacity,gained great economic and social benefit.
采矿方法改进后降低了采场的损失率 ,缩短了采场的回采周期 ,提高了采场的生产能力 ,获得了极大的经济效益和社会效益。
2) sample period
采样周期
1.
In view of the character of shearers drum lifting by memory program controlling,this paper analyzes various factors influencing sample period.
针对采煤机滚筒记忆程控调高的特征,分析了影响采样周期大小的诸多因素,以采煤机牵引行走位移作为采样间隔的标尺,给出了等位移间隔作为采样周期的理论值。
2.
The relation of the control error, induced with the sample measurment, to the sample period has been analyzed and the choice of the sample period is also given.
分析了开关量信号接入模式下行程位移量调节过程中采样测量时间上的滞后引入的控制误差与采样周期的关系 ,并给出了采样周期的选择原
3.
Because there is pure delay time τ in the object , so it is taken to be better choice that the sample period T is equal to pure delay time τ , and some literature persists in this opinion also .
在纯滞后系统中 ,由于对象存在纯滞后时间τ ,因此常使人觉得 ,对这类系统的控制 ,采样周期选择为τ控制效果比较好 ,而一些文献也执此观点。
3) sampling period
采样周期
1.
Optimal sampling period selection methed for network control system;
网络控制系统中采样周期的优化选取方法
2.
The effect of sampling periods disturbance on discrete linear system;
采样周期干扰对离散线性系统的影响
3.
Maneuvering target model based on small sampling period;
一种基于小采样周期的机动目标模型
4) cyclic production
周期采油
5) cycle-time
采集周期
6) Sampling cycle
采样周期
1.
This paper has described the composing of floating-car system,presented a theoretical method for floating-car sampling cycle optimization: regarding speed as a stochastic signal,analyzed its frequency spectrum using fourier transform,and decided the optimal sampling frequency by Shannon sampling theory.
针对目前浮动车采样周期主要凭主观经验确定的问题,提出了采样周期优化的理论方法:将浮动车瞬时速度当作随机信号,利用傅立叶变换对其进行频域分析,然后依据Shannon采样定理,确定浮动车的优化采样频率。
2.
This paper analyzes the causes of error resulted from many ways, such as floating-point arithmetic, temperature, pressure measuring loop, choice of sampling cycle, so that the problems can be noticed.
流量积算(或显示)仪是一种多参量综合计算的仪表,最终结果的准确度是各环节的综合误差,本文就多次浮点运算、温度、压力测量回路、采样周期的选取等方面分析产生误差的原因,以便在设计时引起注意。
补充资料:回采率
在计算的区域(或计算范围)内采出的工业储量与报销的工业储量(即该区域的工业总储量)的百分比叫回采率;损失的工业储量与报销的工业储量的百分比叫矿石损失率。这两个指标从数量上表示地下资源的利用程度。根据计算范围的大小,可分为工作面(见回采工作面)、采区(矿块)、阶段和全矿回采率。中国矿山管理部门对不同矿床的回采率都有相应的规定,以保证资源的充分回收。非煤地下矿山常用有用成分回采率,即采出工业储量中的有用成分含量与报销工业储量中的有用成分含量的百分比来表示资源的利用程度。有用成分损失率为损失的有用成分含量与报销工业储量中的有用成分含量的百分比。
矿石损失 分设计损失和生产损失两类。前者主要是矿山设计中规定不采的各种保安矿柱。后者包括矿山生产期间因地质变化采不出的部分矿体或煤层,维护采场、巷道及地质构造破坏所保留的矿柱,因深孔位置布置不当未崩下的矿石,出矿过程遗留在底板和充填料中的损失,因废石大量混入,停止放矿留在崩落采场的损失,运输过程中的洒落损失和其他管理不善造成的损失。矿石损失除降低资源利用效果外,将增加每吨采出矿石的开拓、采准、折旧和管理等的摊销费用。大量矿石损失将缩短矿山服务年限,并可能造成冲击地压和自燃发火等隐患。
矿石贫化 采矿过程中采出的矿石因混入废石,使矿石品位降低的现象。矿石贫化将增加运输和加工费用,降低矿石加工部门的生产能力和回收率。如废石中含有有害杂质,将降低最终产品质量。
矿石损失率和贫化率 在露天开采中,两者一般在5%以下,低于地下开采很多。不同地下采矿方法的损失率和贫化率也相差很大,如充填法可能降至5%以下,而分段和阶段崩落法常大于15%。有的采矿方法如分段和阶段崩落法,减少矿石损失时,则贫化增大。20世纪50年代以来,各国广泛采用高强度、低成本的地下采矿方法开采较贫的矿体,损失和贫化指标都较高。
贫化率可根据工业矿石品位和采出矿石品位直接算出。如能直接测定采出矿石量、损失矿石量和混入废石量,可直接算出回采率和废石混入率,如不能直接测定,则用下式间接计算:
式中:Q为工业储量,c为工业储量的品位,T为采出矿石量,a为采出矿石的品位,b为混入废石的品位。在设计中,多根据条件类似的矿山来选用采矿方法的损失和贫化指标。设计规定不采的矿石,损失指标可直接算出。
降低矿石损失和贫化指标的措施 加强地质测量工作,提供可靠的地质资料;正确选择采矿方法及其构成要素;合理圈定保安矿柱;选用正确的开采顺序;及时回采矿柱和处理采空区;合理选用覆岩下的放矿方案和放矿制度;注意减少采场中和运输过程中的粉矿损失;加强生产管理和统计工作。
矿石损失 分设计损失和生产损失两类。前者主要是矿山设计中规定不采的各种保安矿柱。后者包括矿山生产期间因地质变化采不出的部分矿体或煤层,维护采场、巷道及地质构造破坏所保留的矿柱,因深孔位置布置不当未崩下的矿石,出矿过程遗留在底板和充填料中的损失,因废石大量混入,停止放矿留在崩落采场的损失,运输过程中的洒落损失和其他管理不善造成的损失。矿石损失除降低资源利用效果外,将增加每吨采出矿石的开拓、采准、折旧和管理等的摊销费用。大量矿石损失将缩短矿山服务年限,并可能造成冲击地压和自燃发火等隐患。
矿石贫化 采矿过程中采出的矿石因混入废石,使矿石品位降低的现象。矿石贫化将增加运输和加工费用,降低矿石加工部门的生产能力和回收率。如废石中含有有害杂质,将降低最终产品质量。
矿石损失率和贫化率 在露天开采中,两者一般在5%以下,低于地下开采很多。不同地下采矿方法的损失率和贫化率也相差很大,如充填法可能降至5%以下,而分段和阶段崩落法常大于15%。有的采矿方法如分段和阶段崩落法,减少矿石损失时,则贫化增大。20世纪50年代以来,各国广泛采用高强度、低成本的地下采矿方法开采较贫的矿体,损失和贫化指标都较高。
贫化率可根据工业矿石品位和采出矿石品位直接算出。如能直接测定采出矿石量、损失矿石量和混入废石量,可直接算出回采率和废石混入率,如不能直接测定,则用下式间接计算:
式中:Q为工业储量,c为工业储量的品位,T为采出矿石量,a为采出矿石的品位,b为混入废石的品位。在设计中,多根据条件类似的矿山来选用采矿方法的损失和贫化指标。设计规定不采的矿石,损失指标可直接算出。
降低矿石损失和贫化指标的措施 加强地质测量工作,提供可靠的地质资料;正确选择采矿方法及其构成要素;合理圈定保安矿柱;选用正确的开采顺序;及时回采矿柱和处理采空区;合理选用覆岩下的放矿方案和放矿制度;注意减少采场中和运输过程中的粉矿损失;加强生产管理和统计工作。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条