1) Fe Cu substitutional material
铁铜复合材料
2) Fe Cu gradient composite
铁-铜基梯度复合材料
3) copper matrix composites
铜基复合材料
1.
SiCf/Ti/Cu composite was prepared by foil-fiber-foil method in order to model the effects of Ti as interfacial binder on SiC fiber reinforced copper matrix composites and the corresponding interfacial reactions.
利用箔-纤维-箔法制备了SiCf/Ti/Cu复合材料,用于模拟研究Ti在SiC纤维增强铜基复合材料中用作界面改性涂层时的作用及其界面反应情况。
2.
The reasons for failure of electrodes during spot welding and the latest research on copper matrix composites for electrodes are summarized in the paper.
概述了电阻点焊过程中点焊电极的失效原因及铜基复合材料点焊电极的研究进展。
3.
In this paper,the surface treatment of carbon fiber and the research progress on the fabrication and properties of the carbon fiber reinforced copper matrix composites are introduced.
介绍了碳纤维的表面处理及碳纤维增强铜基复合材料的制备工艺与性能的研究进展。
4) Copper-based composite
铜基复合材料
1.
Combustion and In-Situ Reaction Synthesis of Dual-phase Ceramic Reinforced Copper-based Composites;
燃烧反应原位合成双相陶瓷增强铜基复合材料
2.
The fundamental properties of the copper-based composite were studied.
采用放热合成和热压烧结的工艺制备出一种陶瓷颗粒增强铜基复合材料,采用X-ray、扫描电子显微镜对制备的铜基复合材料进行了结构分析,并研究了材料的电学和耐磨特性。
5) copper matrix composite
铜基复合材料
1.
Effect of nano ZrO_2 crystal structure on copper matrix composite interface;
纳米ZrO_2晶型对铜基复合材料界面的影响
2.
The copper matrix composites reinforced with short carbon fibers(CFs) were prepared by cold press and sintering using copperized short CFs.
采用冷压烧结工艺制备了短碳纤维增强铜基复合材料,考察了该复合材料的干摩擦磨损性能。
3.
The nano-Al2O3 reinforced copper matrix composite was prepared by powder metallurgy technique.
以纳米Al2O3为增强相,用粉末冶金法制备了铜基复合材料。
6) Cu-based composite
铜基复合材料
1.
Preparation of Cu-based composite materials reinforced by nanotube by powder-metallurgy;
粉末冶金法制备纳米碳管增强铜基复合材料的研究
2.
The preparation methods of Cu-based composite were discussed,and the preparation techniques of the materials were analyzed,and some advices were put forward.
综合论述了铜基复合材料的制备方法,对铜基复合材料的制备工艺进行了分析,并提出了自己的建议。
3.
To solve the interfacial bonding problem of reinforced phase and matrix phase by conventional sintering,Cu-based composite reinforced by in-situ formed Mo2C was prepared by normal pressure sintering,hot pressing sintering and plasma activated sintering(PAS).
针对常规烧结方法难以实现强化相与基体相界面良好结合的特点,采用常压烧结、热压烧结、等离子活化烧结(PAS)3种不同烧结方式制备原位生成Mo2C强化铜基复合材料。
补充资料:钯/铜复合材料
分子式:
CAS号:
性质:由钯和铜形成的复合材料。不形成连续固溶体,亦无有序无序转变,导电率比传统的钯铜合金大大提高,随铜含量增加而呈直线上升,其值接近理论计算值。Pd/Cu18, Pd/Cu42,Pd/Cu60,Pd/Cu72的导电率分别为19.3m/Ω·mm2,31.4m/Ω·mm2,40.16m/Ω·mm2和45.6m/Ω·mm2。Pd/Cu42的理论值33.2m/Ω·mm2;Pd/Cu40合金的电导率仅为3m/Ω·mm2。Pd/Cu复合材料的硬度、屈服极限、抗拉强度和伸长率几乎与成分无关。它们的维氏硬度为882.6MPa。采用纤维复合方法制取。在铜管中装入5000根钯丝,经大变形量冷加工和中间退火而制成40.5-2mm的丝材。也可用钯片和铜片叠合卷紧挤压拉伸以及混合粉料用加热等静压方法。作汽车闪光灯继电器接点。
CAS号:
性质:由钯和铜形成的复合材料。不形成连续固溶体,亦无有序无序转变,导电率比传统的钯铜合金大大提高,随铜含量增加而呈直线上升,其值接近理论计算值。Pd/Cu18, Pd/Cu42,Pd/Cu60,Pd/Cu72的导电率分别为19.3m/Ω·mm2,31.4m/Ω·mm2,40.16m/Ω·mm2和45.6m/Ω·mm2。Pd/Cu42的理论值33.2m/Ω·mm2;Pd/Cu40合金的电导率仅为3m/Ω·mm2。Pd/Cu复合材料的硬度、屈服极限、抗拉强度和伸长率几乎与成分无关。它们的维氏硬度为882.6MPa。采用纤维复合方法制取。在铜管中装入5000根钯丝,经大变形量冷加工和中间退火而制成40.5-2mm的丝材。也可用钯片和铜片叠合卷紧挤压拉伸以及混合粉料用加热等静压方法。作汽车闪光灯继电器接点。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条