说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 原子作用势
1)  effective pair potential
原子作用势
2)  interatomic potential
原子间作用势
1.
As the interatomic potential,Moliére potential is used in the simulation,and the theoretical screenging length is adopted which was advanced by Yamamura to include shell effects.
采用山村等人提出的考虑壳层效应的理论屏蔽长度 ,原子间作用势用Moli啨re势 。
3)  the atomic interaction potential
原子相互作用势
1.
The influences of the atomic interaction potential and the atomic vibration non-simple harmonic effect on the solid elastic modulus are mainly discussed.
分别导出了L J和Morse相互作用势作用下面心立方结构的惰性元素晶体和金属晶体的弹性模量随压强的变化规律,讨论了原子相互作用势以及原子振动非简谐效应对固体弹性模量的影响。
4)  interatomic potentials
原子间相互作用势
1.
The interatomic potentials are very important in the computer simulation of condensed matters, especially for their properties and evolution processes based on molecular dynamics and Monte Carlo method.
原子间相互作用势是凝聚态物质在原子尺度上进行计算机模拟的基础,特别是用分子动力学和Monte Carlo方法对凝聚态物质的性质和过程进行模拟时,合适的原子间相互作用势是得到有意义的结果的前提和条件。
2.
A series of Fe based compounds with NaZn_ 13-type structure is studied by using inversed interatomic potentials.
利用Chen-Mbius晶格反演获得的原子间相互作用势,对NaZn13型Fe基金属间化合物进行原子级模拟研究。
3.
The crystal structures of ternary RFe_2Zn_ 20 and site preferences of quaternary RFe_2Zn_ 20-x In_ x compounds are investigated by using interatomic potentials based on the lattice inversion technique.
利用晶格反演方法获得了一系列有效的原子间相互作用势,对三元RFe2Zn20和四元RFe2Zn20-xInx化合物进行原子级模拟计算。
5)  EAM(embeded atom method) potential
镶嵌原子法作用势
6)  interacting power between atoms
原子间相互作用对势
补充资料:介子-原子核相互作用
      又叫介子核物理,在中高能核物理中,利用介子作探针来研究原子核的领域。根据所用介子的种类,包括π介子-核相互作用,K介子-核相互作用。习惯上把μ-子与原子核作用形成的-子原子&dbname=ecph&einfoclass=item">μ-子原子的研究也归入这一领域。
  
  利用介子来研究原子核,主要是因为它们具有一些独特的性质。例如,π介子的同位旋T=1,它有三种电荷状态,可以通过电荷交换反应使原子核改变一个甚至两个单位的电荷,形成某些特殊的原子核状态。又如,π介子是玻色子,自旋为0,它可以在核内产生或被吸收。π被吸收后,至少有139.6MeV的能量交给了原子核,这是变革原子核的独特手段。另一方面,π吸收过程又与核力相联系。按照目前的认识,核力是由核子之间交换玻色子而产生的。所以,原子核将会对π介子有较高的响应。再加,π-N(π介子-核子)系统自旋和同位旋都是3/2的Δ33共振态粒子,即Δ(1232)的存在以及它的明显的同位旋依赖性质,提供了研究核内核子激发态的直接方法,也为研究核内物质分布提供了新的手段。
  
  K介子是另一类用于研究原子核的介子,它的同位旋为1/2,但它是奇异粒子,具有奇异数S,K+的S=1,K-的S=-1。它们可以通过(K-,π-)或(π+,K+)等这类奇异交换反应把核内的中子变成带奇异数的重子(如Λ或Σ超子),形成超核。(K--)反应已成为目前产生超核的主要手段。在低能区,K+-N系统没有共振,其总截面仅约10mb,这相当于K+在核物质中的平均自由程λ≈5~7fm,正因为这种相对弱的相互作用,K+介子又被叫做强作用物理的"电子"。期望K+介子成为探测原子核的内部区域中子分布的有用工具。
  
  μ-子是只有电磁作用的"重电子",它的质量是电子的 207倍。它在原子核外的轨道半径是电子在核外轨道半径的1/207,从它上面去"看"原子核,将会清楚得多(见-子原子&dbname=ecph&einfoclass=item">μ-子原子)。
  
  20世纪60年代初,人们定性地认识到介子的这些特性有可能用于原子核研究,并开始了先驱性的实验,发现了一系列新现象。以后相继建立了一些专门产生 π介子和μ-子的强流质子加速器,称为介子工厂。介子工厂的建立并投入运转,标志着π、μ 物理的"工业革命"。
  
  介子与原子核的相互作用按其反应类型可分成如下几种。
  
  弹性和非弹性散射  入射的介子与核碰撞后,原子核仍处于基态或低激发态,前者称为弹性散射,后者称为非弹性散射。低能π介子以及 K+在核中的平均自由程较大,人们期望通过介子-核散射的分析得到核内物质分布的信息。当入射π介子的能量在 195MeV附近,由于π-N系统的Δ33共振以及它的同位旋依赖性,可望通过弹性及非弹性散射过程得以了解核内中子分布,原子核的激发方式以及Δ粒子在核中的形成和传播等重要知识。
  
  电荷交换反应及奇异交换反应  因为有三种电荷的π介子,就有可能用π介子将核中的一个或两个中子(或质子)变成质子(或中子),这就是π介子的电荷交换反应。当π介子仅使核中的核子改变了电荷状态,而空间及自旋状态保持不变,这就形成了同位旋相似态。实验中用这种方法已在许多核上发现了同位旋相似态跃迁。用这种反应也发现了一些巨共振(见巨多极共振)。由于 K介子是奇异粒子,它可以通过奇异交换反应将奇异数交换给核子,从而产生包含奇异粒子的新的核物质形态。例如,(K--)反应是目前产生Λ及∑超核的主要途径。(π+,K+)是另一类产生超核的反应,它是将核中的中子变成S=-1的Λ粒子,而π+变成S=1的K+介子飞出核外。这些都是介子核物理中特有的反应方式。
  
  介子-核吸收  吸收是指介子把它的总能量(包括其静止质量)一并交给了原子核,π介子可以被两个以上的核子吸收。人们期望介子的核吸收能给出核内核子关联的知识。然而,目前仍然没有透彻地认识π介子吸收的机制,还不能用它来研究核结构。由于π核吸收的截面很大,甚至可以大到π核非弹性碰撞截面的一半,所以,π核吸收的深入研究是定量地认识到有 π介子-核反应过程的一个关键。
  
  虽然K介子也可以被核吸收,但由于它是带奇异数的粒子,被核吸收以后,一定要将它的奇异数交给核中的核子,把核子变成带奇异数的重子,如Λ、∑ 等。例如,K-pn→p∑-以及Kpp→n∑+(或pΛ)等过程。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条