1) foaming microcapsules
发泡微胶囊
1.
The application of foaming microcapsules in foaming flocking;
发泡微胶囊在发泡植绒中的应用
2) Physical blowing microcapsule
物理发泡微胶囊
1.
Physical blowing microcapsules, because of their expandable property, have been used in the three-dimensional pigment printing, and their applications have been extending widely into other special fields since recent years.
物理发泡微胶囊最早应用于立体印花,近年来,在其它领域的应用也不断被开发,因而很有市场前景,然而在国内仍无同类产品工业化的报道。
3) spontaneous vesicle
自发囊泡
1.
Tween80/ n-Butylalcohol/H2O microemulsion and spontaneous vesicle systems which were used as all-trans retinoic acid (ATRA) drug delivery systems were prepared.
本文制备了全反式维甲酸(ATRA)的Tween80/正丁醇/水微乳液和阴阳离子复配自发囊泡体系两种药物载体。
5) microcapsule
['maikrəu,kæpsju:l]
微胶囊
1.
Effects of ratio of wall material to core material and concentration of material on properties of products during preparation of compound vitamin microcapsules;
复合维生素微胶囊制备中壁材用量及浓度对成品的影响
2.
Preparation and application of control-released fragrance microcapsules;
缓释型香精微胶囊的制备及应用
3.
Optimization of the technology for the extraction of citrus essential oil by microcapsule and aqueous two-phase system;
微胶囊双水相提取柑桔精油的工艺优化
6) microcapsulation
微胶囊化
1.
PyrovatexCP microcapsulation process is investigated by interfacial polymerization, including the effect of emulsifier dosage, emulsifying time, stirring speed etc.
通过界面聚合法对Pyrovatex CP微胶囊化,研究了乳化分散剂用量、乳化时间、搅拌速度等因素对微胶囊粒径大小及分布的影响规律。
2.
The advances on research and development in flame retardant magnesium hydroxide were reviewed, including the surface modification of the magnesium hydroxide with titanate and stearic acid, and microcapsulation, and the morphology control of the magnesium hydroxide, such as the preparation of magnesium whiskers.
综述了无机阻燃剂氢氧化镁的研发进展,重点介绍了钛酸酯和硬脂酸(盐)表面改性、微胶囊化和控制氢氧化镁的形态,如镁盐晶须的制备等,并指出发展方向是改性氢氧化镁与其他阻燃剂协同使用。
补充资料:微孔发泡注射成型
在传统的结构发泡注射成型中,通常采用化学发泡剂,由于其产生的发泡压力较低,生产的制件在壁厚和形状方面受到限制。微孔发泡注射成型采用超临界的惰性气体受到限制。微孔发泡注射成型采用超临界的惰性气体(CO2、N2)作为物理发泡剂.其工艺过程分为四步:
1)气体溶解:将惰性气体的超临界液体通过安装在构简上的注射器注人聚合物熔体中,形成均相聚合物/气体体系;
2)成核:充模过程中气体因压力下降从聚合物中析出而形成大量均匀气核;
3)气泡长大:气在精确的温度和压力控制下长大;
4)定型:当气泡长大到一定尺寸时,冷却定型。
微孔发泡与一般的物理发泡有较大的不同。首先,微孔发泡加工过程中需要大量惰性气体如CO2、N2溶解于聚合物,使气体在聚合物呈饱和状态,采用一般物理发泡加工方法不可能在聚合物一气体均相体系中达到这么高的气体浓度。其次,微孔发泡的成核数要大大超过一般物理发泡成型采用的是热力学状态逐渐改变的方法,易导致产品中出现大的泡孔以及泡孔尺寸分布不均匀的弊病。微孔塑料成型过程中热力学状态迅速地改变,其成核速率及泡核数量大大超过一般物理发泡成型。
与一般发泡成型相比,微孔发泡成型有许多优点。其一是它形成的气泡直径小,可以生产因一般泡沫塑料中微孔较大而难以生产的薄壁(1mm)制品;其二是微孔发泡材料的气孔为闭孔结构,可用和阻隔性包装产品;其三是生产过程中采用CO2或N2,因而没有环境污染问题。
美国Trexel公司在MIT微孔发泡概念的基础上,将微孔发泡注射成型技术实现了工业化,形成了MuCell专利技术。MuCell艺用于注塑的主要优点是,反应为吸热反应,熔体粘度低,熔体和模具温度低,因此制品成型周期、材料消耗和注塑压力及锁模力都降低了,而且其独特之处还在于这种技术可用于薄壁制品以及其他发泡技术无法发泡制品的注塑。MuCell在注射成型技术上的突破为注塑制品生产提供了以前其他注塑工艺所不具有的巨大能力,为新型制品设计、优化工艺和降低产品成本开拓了新的途径。采用MuCell技术的注塑制品正被用于许多工业领域,包括汽车、医药、电子、食品包装等各个行业。
1)气体溶解:将惰性气体的超临界液体通过安装在构简上的注射器注人聚合物熔体中,形成均相聚合物/气体体系;
2)成核:充模过程中气体因压力下降从聚合物中析出而形成大量均匀气核;
3)气泡长大:气在精确的温度和压力控制下长大;
4)定型:当气泡长大到一定尺寸时,冷却定型。
微孔发泡与一般的物理发泡有较大的不同。首先,微孔发泡加工过程中需要大量惰性气体如CO2、N2溶解于聚合物,使气体在聚合物呈饱和状态,采用一般物理发泡加工方法不可能在聚合物一气体均相体系中达到这么高的气体浓度。其次,微孔发泡的成核数要大大超过一般物理发泡成型采用的是热力学状态逐渐改变的方法,易导致产品中出现大的泡孔以及泡孔尺寸分布不均匀的弊病。微孔塑料成型过程中热力学状态迅速地改变,其成核速率及泡核数量大大超过一般物理发泡成型。
与一般发泡成型相比,微孔发泡成型有许多优点。其一是它形成的气泡直径小,可以生产因一般泡沫塑料中微孔较大而难以生产的薄壁(1mm)制品;其二是微孔发泡材料的气孔为闭孔结构,可用和阻隔性包装产品;其三是生产过程中采用CO2或N2,因而没有环境污染问题。
美国Trexel公司在MIT微孔发泡概念的基础上,将微孔发泡注射成型技术实现了工业化,形成了MuCell专利技术。MuCell艺用于注塑的主要优点是,反应为吸热反应,熔体粘度低,熔体和模具温度低,因此制品成型周期、材料消耗和注塑压力及锁模力都降低了,而且其独特之处还在于这种技术可用于薄壁制品以及其他发泡技术无法发泡制品的注塑。MuCell在注射成型技术上的突破为注塑制品生产提供了以前其他注塑工艺所不具有的巨大能力,为新型制品设计、优化工艺和降低产品成本开拓了新的途径。采用MuCell技术的注塑制品正被用于许多工业领域,包括汽车、医药、电子、食品包装等各个行业。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条