1) multi_stochastical modeling
多次随机建模
2) Stochastic Modeling
随机建模
1.
A review of development course and prospect of petroleum reservoir characterization and stochastic modeling;
油气储层表征与随机建模的发展历程及展望
2.
Identifying spatial distribution of the interlayers with fuzzy evaluation and stochastic modeling-taking Guantao 6 Member in Zhongyi area of Gudao Oilfield as an example;
结合模糊综合评判与随机建模识别夹层空间分布——以孤岛油田中一区馆6段为例
3.
Application of stochastic modeling in conglomerate reservoir description in Karamay Oilfield;
随机建模在克拉玛依油田砾岩储层描述中的应用
3) stochastic model
随机建模
1.
Application of the reservoir stochastic modeling in subdividing sedimentary facies;
应用储层随机建模方法细分沉积相
2.
The dynamic model and stochastic model of digital closed-loop FOG were developed.
在随机建模中,运用不同的随机过程来模拟各种随机噪声,采用正交小波变换的方法来模拟1/f噪声,用白噪声一次离散积分的方法来模拟速率随机游走噪声,用一阶马尔可夫过程或指数相关随机序列来模拟指数相关噪声。
4) random modeling
随机建模
1.
According to the characteristic of the block reservoir in Sa 2 lower multi layer sandstone in the east of Pucheng Oil Field,this paper constructs a 3D geologic model and reservoiu random model through subdividing flow units,sedimentary micro phase and reservoiu parameter study and using 3D visualization modeling technique and random modeling technique.
针对濮城油田东区沙二下多层砂岩断块油藏特点 ,通过细分流动单元、沉积微相和储层参数研究 ,应用三维可视化建模技术和随机建模技术 ,建立了油藏三维地质模型和储层随机模型 ,对剩余油监测解释技术、剩余油挖潜的调堵和调驱配套技术进行研究。
5) multi-level modeling
多层次建模
1.
The paper presents multi-level modeling based battlefield communication networks simulation method and effectiveness evaluation based simulation method for complicated electromagnetic environment exploratory analysis.
针对战场复杂信息环境中的通信网络环境和复杂电磁环境,提出了基于多层次建模的通信网络环境仿真和基于效能评估的复杂电磁环境探索性仿真方法,进行的仿真实验验证了二者可以有效地对战场复杂信息环境的抽象特征进行分析。
6) multi-times random sampling
多次随机取样
1.
This paper presents a method to speed up the FCM algorithm using cluster centers obtained by the multi-times random sampling clustering as the initial cluster centers for the FCM algorithm to reduce the number of iterations required for convergence,and for optimization of the data set to reduce the time for each iteration.
为解决模糊C-均值(FCM)聚类算法在大数据量中存在的计算量大、运行时间过长的问题,提出了一种改进方法:先用多次随机取样聚类得到的类中心作为FCM算法的初始类中心,以减少FCM算法收敛所需的迭代次数;接着通过数据约减,压缩参与迭代运算的数据集,减少每次迭代过程的运算时间。
补充资料:随机数和伪随机数
随机数和伪随机数
random and pseudo-randan numbers
随机数和伪随机数【喇间佣1 al川牌”山一喇闭..m.山娜;cJI了,a如曰e”nce,口oc月卿成.以叹“c月a】 数亡。(特别,二进制数:。),其顺序出现,满足某种统计正则性(见概率论(probability Uleory)).人们是这样区别随机数(mndomn切mbe比)和伪随机数(PSeudo一mn由mn切mbe岛)的,前者由随机的装置来生成,而后者是用算术算法构造的.总是假设(出于较好或较差的理由)所得(或所构造)的序列具有频率性质,这些性质对于具有分布函数F(z)的某随机变量心独立实现的一个序列来说是“典型的”;因此人们称作根据规律F(习分布的(独立的)随机数.最经常使用的例子为:在区间【O,l]上均匀分布的随机数亡。,尸(亡。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条