说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 变井筒储存
1)  variable well bore storage
变井筒储存
2)  variable well-bore storage
变井筒存储
1.
Pressure behavior analysis of condensate gas reservoir in consideration of variable well-bore storage;
考虑变井筒存储的凝析气压力动态分析
3)  wellbore storage
井筒存储
1.
Well test analysis methods used before only consider the effect of wellbore storage on well pressure behavior but not the effect of its variation, which greatly affect pressure performance due to the characteristics of condensate gas reservoirs.
以前的试井分析方法虽然考虑了井筒存储的影响,但没有考虑井筒存储变化对压力动态的影响。
4)  wellbore storage
井筒储存
1.
The influence of wellbore storage, skin factor, interporosity flow coefficient and elastic storativity ratio to the bottom hole pressure of the observation well were analyzed.
在建立三重介质油藏试井解释模型的基础上,对该类油藏的干扰试井压力动态变化进行了研究;分析了井筒储存、表皮系数、窜流系数以及弹性储容比对观测井井底压力的影响。
2.
Effect of wellbore storage exist commonly in a long time after well testing in Baolang oilfield,a low permeability reservoir with relatively high GOR,leading to a long time needed for conventional pressure buildup test operation.
宝浪油田属于油气比较高的低渗透油藏,在试井时井筒储存效应长时间存在,使常规的压力恢复试井时间很长。
3.
A new transient pressure analysis method of the well with wellbore storage and skin effect in infinite reservoir is presented in this paper,that is the matching method using the ratio of dimensionless pressure and time.
提出了一种新的适用于均质无限大油藏具有井筒储存和表皮效应影响的压力不稳定试井分析方法,即无因次压力与时间比典型曲线拟合法。
5)  Well-bore storage
井筒储存
1.
Based on the fractal geometry and non-equilibrium sorption model of coalbed methane,the pseudo-steady mathematical models with well-bore storage and skin effects in fractal coalbed methane reservoir are presented when the constant flow rate is specified at the well-bore in infinitely large reservoir and bounded reservoir.
根据Laplace变换和Stehfest数值反演方法,分别求得无限大地层和有界封闭地层条件下中心一口井定产量生产时无因次井筒压力的实空间解,探讨了分形维数、无因次井筒储存系数及表皮系数等对无因次井筒压力及其导数曲线的影响。
6)  well bore storage
井筒存储
1.
Many factors, including well bore storage, reservoir and fluid properties, flow behaviour, etc.
井筒效应包括井筒存储效应、井筒相再分布、变井储以及质量、动量变化。
补充资料:变分原理(复变函数论中的)


变分原理(复变函数论中的)
omplex function theory) variational principles (in

  f日In}F(O(只,t),0)l}乙+:d乙=】nll,—}——,厂:’、一几t)〔.匕,日亡卜OC一“C’日当r,0时下*(:、,t)/:在B*的紧子集上一致地趋于0(k一1,2).该结果已被推广到二连通区域(13」).若加以进一步的限制,就能得到映射函数在B、(t)内关于表征所考虑区域边界形变的参数的展开式余项的估计式(在闭区域内一致)(【4」).份卜注】存在大量的变分原理,见【A3}第10章.亦可见变分参数法(variation一parametrie nlethod);肠”ner方法(幼wner Tnetl〕ed);内变分方法(internalvariations,服t】1‘对of). 还可见边界变分方法(boundary variations,me-tll‘xlof).M.schiffer对单叶函数的变分方法做出了重要的贡献,见〔A3」第10章.变分原理(复变函数论中的)Ivaria石0“目州址妙es(加e网Plex五叮‘6佣山印ry);。即“a双“OHH从e nP一”u“nHI 显示在平面区域的某些形变过程中那些支配映射函数变分的法则的断语. 主要的定性变分原理是ljxlelbf原理(Linde场fpnnciPle),可描述如下.设B*是z*平面上边界点多于一点的单连通区域,06B*,k=1,2;设二(;,B*)是对于B*的Green函数的阶层曲线,即圆盘王心川C!<1}到B*而使原点保持不变的单叶共形映上映射下圆周C(r)二{乙:{心}二;}的象,o<;<1.进而设函数f(:,)实现B,到B:的共形单射,f(0)‘O,在这些假定下有:l)对于L(:,B,)上任一点:?,存在位于阶层曲线L(:,BZ)上(这仅当f(B,)二BZ才有可能)或其内部的一点与之对应;及2){f’(0)1蕊}夕‘(0)},其中g(:,)满足g(0)二o是Bl到 BZ的单叶共形映射(等号仅当f(B1)=B:时成立).Lindebf原理系从Rien坦nn映射定理(见Rle-n.lln定理(Rierl飞幻In theorem))与Sdlwarz引理(Schwarz lemrr必)推出.相当精细的构造使之能够求出由被映射区域的给定形变所引起的映射函数的逐点偏差. 定量的基本变分原理系由M.A.几aBpeHTbeB(〔1」)获得(亦可见【2]),可叙述如下,设B:是具有解析边界的单连通区域,0任B!.假定存在给定区域族B,(r),0‘Bl(r),0(t蕊T,T>O,B;(0)二B,,具有JOrdan边界rl(t)={:一z,=0(之,t)},0(又续2兀,0(0,t)二Q(2二,r),其中Q(又,r)关于t在t二O可微且对又是一致的;设F(::,t),F(0,t)=0,F:.(0,t)>O,是把B,(t)单叶共形映射为BZ二{22:I:21  
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条