1) mechanical fatigue
机械疲劳
1.
A mong so many factors contributing to durability, mechanical fatigue is the primary factor.
在影响耐久性的诸多因素中,机械疲劳是首要因素。
2.
The key results are as follows: Frequency has no effect on fatigue crack growth and the main control mechanism is mechanical fatigue at 550℃; Frequency has no effect on fatigue crack growth and the main control mechani.
结果表明:在试验温度为550℃时,频率的改变对直接时效GH4169高温合金疲劳裂纹扩展性能基本没有影响,其裂纹扩展的控制机理是机械疲劳;在试验温度为650℃时,在0。
3.
In this paper,the experimental study and the analysis about the behavior of thermal mechanical fatigue (TMF) crack growth were conducted in Ni 3Al superalloy,with thermal cycle of 450℃ to 990℃.
本论文对 Ni3Al高温合金进行了 45 0℃~ 990℃热 /机械疲劳裂纹扩展行为的试验研究与宏微观分析。
2) thermo-mechanical fatigue
热-机械疲劳
1.
Previous life prediction methods of creep fatigue mainly aimed at creep thermo-mechanical fatigue,which is not quite appropriate for creep-thermal fatigue.
据此,提出把蠕变-热疲劳等效为恒定应力幅和平均应力的热-机械疲劳的寿命预测方法。
3) thermomechanical fatigue
热机械疲劳
1.
-of-phase(OP) thermomechanical fatigue(TMF).
对镍基单晶高温合金DDS在恒机械应变控制下的反位相(OP)热机械疲劳(TMF)实验后的微观结构进行了研究。
2.
High temperature isothermal mechanical fatigue and in phase thermomechanical fatigue (TMF) tests in stress control were carried out on a molybdenum alloy.
对钼合金进行了应力控制高温低周等温疲劳和同相位热机械疲劳试验。
4) thermo-mechanical fatigue
热机械疲劳
1.
The internal stresses produced by dislocation networks at the γ/γ' interfaces in a single crystal nickel-base superalloy DD8 has been studied after in phase (IP) and out of phase (OP) thermo-mechanical fatigue (TMF) testing.
计算了DD8单晶镍基高温合金在同相(IP)和反相(OP)热机械疲劳(TMF)后γ/γ'相界面上产生的位错网的内 应力。
2.
A dense hexagonal dislocation network exists on the r/r' interfaces normal to the stress axis in DD8 single crystal nickel base superalloy after in phase (IP) thermo-mechanical fatigue(TMF).
DD8单晶镍基高温合金经过同位相热机械疲劳(TMF)后,在垂直于应力轴的γ/γ’相界面上存在着大量的六角形位错网。
3.
The microstructures of DD8 single crystal nickel base superalloy were observed by TEM before and after thermo-mechanical fatigue.
透射电镜(TEM)观察表明,DD8单晶镍基高温合金经过热机械疲劳(TMF)后,在同位相(IP)和反位相(OP)加载的条件下,合金内部的位错组态和γ′沉淀相的形貌有很大的区别,在IP加载条件下,垂直应力轴的,γ/γ′相界面上存在着密集的六角形位错网,平行应力轴的相界面上存在的是四边形的位错网,而且在小机械应变幅下,γ′相出现明显的筏化现象,并且随着应变幅的增加,γ′沉淀相的筏化现象也越来越不明显,在OP加载条件下,在γ/γ′相界面上则没有位错网被观察到,γ′被层错剪切,并且没有明显的筏化出现。
5) thermal-mechanical fatigue (TMF)
热/机械疲劳
1.
In this paper,the experimental study and the macro-micro analysis about thebehavior of thermal-mechanical fatigue (TMF) crack growth were conducted inNi_3Al intermetallic compound IC10 superalloy, which is candidate material for theheat components of high thrust-weight aeronautical engine with thermal cycle of450℃ to 990℃.
本论文对高推重比航空发动机热端部件候选材料Ni_3AI金属间化合物IC10定向凝固高温合金进行了450℃~990℃热/机械疲劳裂纹扩展行为的试验研究与宏微观分析。
6) Thermal mechanical fatigue
热机械疲劳
1.
The influence of phase on thermal mechanical fatigue life is discussed by comparing with three different kinds of the phenomenological descriptions of the life curves which are expressed in terms of mechanical strain range Δεm, total strain range Δεt and inelastical strain range Δεin respectively.
通过比较热机械疲劳寿命的3种不同唯象描述方法,讨论了相位差对疲劳寿命的影响,提出对疲劳寿命的唯象描述应采用总应变范围Δεt或非弹性应变范围Δεin,才符合工况模拟试验和疲劳寿命预测的基本条件。
2.
The thermal mechanical fatigue (TMF) tests were performed using a specific waveform applied different holding time at maximum temperature.
通过在热机械循环最高温度处进入不同保持时间 ,研究了保持时间对涡轮盘材料GH41 33合金热机械疲劳性能及其寿命的影响。
补充资料:五种软件,各取所长,联合运用,对机械疲劳进行仿真
Pro/E:首先用Pro/e进行造型,然后装配。注意,在造型和装配的时候,都要把单位设定好,如果是毫米,就都用毫米做单位。密度也要设定好。例如,用Kg、mm、s 做单位,则密度为国际单位×1.0E-9。 用Mechpro插件,导出Adams可读刚体文件,CMD和SLP文件。
Hypermesh:将装配模型导入Hypermesh,选择好Nastran模板,对所要柔性化的零件进行网格的划分,注意体网格的Image Card为PSOLID。其它内容暂不用设置,可以到Patran中进行设置。导出为Nastran的可读文件格式BDF。
Patran:
打开Patran,新建一个DB数据文件,Import刚才生成的BDF文件。在Import对话框中,Source选定MSC.Nastran Input。
建立与Adams连接的节点,并对该节点进行单元划分,生成一个点单元。
用MPC的特性,用Reb2单元连接节点与相邻的节点,生成蜘蛛网状结构。
将所有的3D单元生成一个新组并起名字,例如(3D)。
设定材料。
设定3D单元的材料特性。
生成超单元,单元边界取为刚才建立的连接点。
求解设置:
Translation Parameters:设定输出为Op2文件。
Solution Type:设定Normal modes;Solution Parameters里,Adams Perparation,Full Run+MNF,Create .out(OP2 file)for MSC Fatigue,下面框中内容全选。
Subcases:Subcase Parameters,设定输出模态;Output Requests,Advanced,Grid Point Stresses,Default_group,Direct。
Method选择Analysis Deck,Apply,提交运算。生成Nastran计算用的的输入文件BDF。
Nastran:设定好工作目录以后,读入刚才生成的BDF,进行运算,生成MNF文件,Op2文件和Out文件。
Adams:
导入Pro/E生成的刚体文件,设定运动副,加上作用力,进行仿真。
导入MNF模态中性文件,用连接点替代刚体零件的运动副,然后删除刚体零件。
对柔性体进行运动仿真分析。
打开Durability插件,选择MSC Fatigue,Export出DAC文件,作为Fatigue的载荷文件。
Patran+Fatigue:
读入OP2文件。
Fatigue Interface,选择S-N方法。
Solution Parameters:Good Man,Von Mises,复选Run Factor of Safety Analysis,输入名义应力(小于此应力则可认为永远不会发生疲劳)。
Material Info:输入材料,输入Region为之前设定的“3D”group。
Load Info:
Time History Manager:Load files:输入Dac文件名,可以用“*”当通配符。例如“Load_Dac*”,则输入Load_Dac_01.dac~Load_Dac_18.dac文件;Load Type:Scalar。
Hypermesh:将装配模型导入Hypermesh,选择好Nastran模板,对所要柔性化的零件进行网格的划分,注意体网格的Image Card为PSOLID。其它内容暂不用设置,可以到Patran中进行设置。导出为Nastran的可读文件格式BDF。
Patran:
打开Patran,新建一个DB数据文件,Import刚才生成的BDF文件。在Import对话框中,Source选定MSC.Nastran Input。
建立与Adams连接的节点,并对该节点进行单元划分,生成一个点单元。
用MPC的特性,用Reb2单元连接节点与相邻的节点,生成蜘蛛网状结构。
将所有的3D单元生成一个新组并起名字,例如(3D)。
设定材料。
设定3D单元的材料特性。
生成超单元,单元边界取为刚才建立的连接点。
求解设置:
Translation Parameters:设定输出为Op2文件。
Solution Type:设定Normal modes;Solution Parameters里,Adams Perparation,Full Run+MNF,Create .out(OP2 file)for MSC Fatigue,下面框中内容全选。
Subcases:Subcase Parameters,设定输出模态;Output Requests,Advanced,Grid Point Stresses,Default_group,Direct。
Method选择Analysis Deck,Apply,提交运算。生成Nastran计算用的的输入文件BDF。
Nastran:设定好工作目录以后,读入刚才生成的BDF,进行运算,生成MNF文件,Op2文件和Out文件。
Adams:
导入Pro/E生成的刚体文件,设定运动副,加上作用力,进行仿真。
导入MNF模态中性文件,用连接点替代刚体零件的运动副,然后删除刚体零件。
对柔性体进行运动仿真分析。
打开Durability插件,选择MSC Fatigue,Export出DAC文件,作为Fatigue的载荷文件。
Patran+Fatigue:
读入OP2文件。
Fatigue Interface,选择S-N方法。
Solution Parameters:Good Man,Von Mises,复选Run Factor of Safety Analysis,输入名义应力(小于此应力则可认为永远不会发生疲劳)。
Material Info:输入材料,输入Region为之前设定的“3D”group。
Load Info:
Time History Manager:Load files:输入Dac文件名,可以用“*”当通配符。例如“Load_Dac*”,则输入Load_Dac_01.dac~Load_Dac_18.dac文件;Load Type:Scalar。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条